2018年郑州大学联合培养单位洛阳师范学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 协方差分析
【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。
2. T 分数
T 分数指由正态分布上的标准分数转换而来的等距量表分数。T 分数以50为平均数,【答案】
以10为标准差。T 分数是Z 分数的变形,因为Z 分数有负值和小数,人们不习惯,所以采用这个公式处理。经过变换,所得的分数全是整数,50分为普通,50分以上越高越好,50分以下越低越差。T 分数的意义及其优点和标准分数相同,不同之处是消除了小数和分数。
3. 个体
【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。
4. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而
决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
二、简答题
5. 度量离中趋势的差异量数有哪些? 为什么要度量离中趋势?
【答案】(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性
在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。这些特殊性常表现为数据的变异性。因此,只用集中量数不可能真实地反映出它们的分布情形。为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
6. 标准差在心理与教育研究中除度量数据的离散程度外还有哪些用途?
【答案】可以应用于差异系数和标准分数中。
7. 试举例说明各种数据类型之间的区别。
【答案】根据不同的分类标准,心理与教育科学研究中的数据可以区分为不同的类型。 (1)从数据的观测方法和来源划分,研究数据可区分为计数数据和测量数据两大类。
①计数数据(count data ), 是指计算个数的数据,一般属性的调查获得的是此类数据,它具有独立的分类单位,一般都取整数形式。
②测量数据(measurement data ), 又称计量数据是指借助于一定的测量工具或一定的测量标准而获得的数据。
(2)根据数据反映的测量水平,可把数据区分为称名数据、顺序数据、等距数据和比率数据四种类型。
①称名数据(nominal data)只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小,在教育和心理类调查研究中,有关被试属性的调查资料,大多属于这类数据。
②顺序数据(ordinal data )是指既无相等单位,也无绝对零的数据,是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。如学生的等级评定、喜爱程度、品质等级、能力等级、兴趣等。这种数据不具有相等单位,也没有绝对零点,只能排出一个顺
序,不能指出相互间的差别大小这类数据不能进行加减乘除运算。
③等距数据(interval data )是有相等单位,但无绝对零的数据,如温度、各种能力分数、智商等。只能使用加减运算,不能使用乘除运算。
④比率数据(ratio data )既表明量的大小,也有相等的单位,同时还具有绝对零点,如身高、体重、反应时、各种感觉阈值的物理量等都属于这种数据类型。
(3)按照数据是否具有连续性,把数据划分为离散数据和连续数据。
①离散数据(discrete data)又称为不连续数据、间断数据。这类数据在任何两个数据点之间所取的数值的个数是有限的。
②连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。至少在理论上从最高到最低之间都可以进一步细分。
8. 简述点估计和区间估计。
【答案】参数估计分为点估计和区间估计。
(1)点估计指用样本统计量来估计总体参数的值,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。例如,对总体平均数的估计,用样本平均数一个好的估计量应该具备无偏性、有效性、一致性和充分性。由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来作估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义,而区间估计在一定意义上弥补了点估计的不足之处。
(2)区间估计指根据估计量以一定可靠程度推断总体参数所在的区间范围,是在点估计的基础上,用数轴上的一段距离表示未知参数可能落入的范围,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。区间估计涉及以下几个概念:
①显著性水平和置信水平
估计总体参数落在某一区间时,可能犯错误的概率,用符号
为置信度或置信水平。
②置信区间
在某一置信度时,总体参数所在的区域距离或区域长度称为置信区间。
区间估计的原理是样本分布理论。在计算区间估计值,解释估计的正确概率时,依据的是该样本统计量的分布规律及样本分布的标准误(SE )。样本分布可提供概率解释,而标准误的大小决定区间估计的长度。一般情况下,加大样本容量可使标准误变小。常见的有正态总体的均值和方差的区间估计等。
表示,也称为信任系数。
三、计算题
相关内容
相关标签