当前位置:问答库>考研试题

2017年河北科技大学统计学复试实战预测五套卷

  摘要

一、简答题

1. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。

【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。

单因素方差分析的步骤为:

(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。

(2)构造检验统计量,计算各样本均值(3)计算样本统计量

(4)统计决策。比较统计量拒绝原假设。

2. 说明条形图和直方图的区别和联系。

【答案】(1)条形图与直方图的区别

①形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少, 矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。

②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。 ③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

(2)联系

两者都是用矩形表示数据分布情况;当矩形的宽度相等时,都是用矩形的高度来表示数据的分布情况。

3. 简述季节指数的计算步骤。

【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:

,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)

并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”

(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。

(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。

第 2 页,共 39 页 样本总均值 的值。若误差平方和 拒绝原假设;反之,不能

4. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?

【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。

检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显

著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分

析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

5. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。

【答案】(1)众数、中位数和平均数的关系

从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。

对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:

①如果数据的分布是对称的,众数中位数和平均数必定相等,即

②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:

③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,

(2)众数、中位数和平均数在实际中的应用

①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。

②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。

③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。

6. 简述系数、c 系数、系数的各自特点。

【答案】(1)相关系数是描述

公式为:式中,列联表数据相关程度最常用的一种相关系数。它的计算《为列联表中的总频数,也即样本量。说系数适合

这个范围。

列联表的情况。C 系数的列联表,是因为对于

计算公式为: 列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于

第 3 页,共 39 页

当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。

(3)克莱默提出了 V 系数。V 系数的计算公式为:

当两个变量相互独立时,

果列联表中有一维为2,即

当两个变量完全相关时,所以V 的取值在之间。如则V 值就等于值。

二、计算题

7. 投一枚硬币,直到出现正面为止,记下在第k 次投掷时首次出现正面的频数如表1所示,问是否相信该硬币是均匀对称的。

1

【答案】设首次出现正面需投掷硬币的次数为X ,若硬币是均匀的,则第k 次投掷时首次出现正面的概率为

该硬币不是均匀对称的

在原假设的条件下,&次投掷首次出现正面的期望频数为:

2 从而可得表2。 依据题意我们可以对其分布建立假设,即

该硬币是均匀对称的,即出现正面的概率和出现反面的概率相等

由表1可得,检验统计量

拒绝原假设,即认为硬币是均匀的。 临界值

为其中的自由度

为所以不能为区间个数,k 为待估参数的个数)。由于

第 4 页,共 39 页