2018年湖南科技大学教育学院312心理学专业基础综合之现代心理与教育统计学考研仿真模拟五套题
● 摘要
一、概念题
1. 古典概率
【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。
2. 差异系数
【答案】差异系数(),又称变异系数、相对标准差等,它是一种相对差异量,用CV 来表示,为标准差与平均数的百分比。在对不同样本的观测结果的离散程度进行比较时,常常遇到下述情况:两个或多个样本所测的特质不同。如何比较其离散程度?即使使用的是同一种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?这时需要运用相对差异量进行比较。差异系数的计算公式是:(S 为某样本的标准差,M 为该样本的平均数)。差异系数在心理与教育研宄中常常应用于同一对象的不同领域或同一领域的不同对象。
3. 频率
【答案】频率(frequency )①亦称“相对频数”。某随机事件A , 在N 次试验中出现的次数n 与试验总次数N 的比值。亦称事件A 发生的频率。记为其值介于0〜1之间。事件的频率越大,说明它出现的可能性越大;反之则越小。一个事件的频率不是一个固定的数值,与总次数N 有关,且即使再重复N 次试验,次数n 也可能不同。但在大量重复试验中频率具有稳定性,即当试验次数N 无限增大时,频率F 会在某个固定值上下波动,而且偏差越来越小。②简谐振动基本物理量。物体每秒振动的次数。单位是赫兹(Hz )。在数学关系上频率是物体振动周期的倒数。
4. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
第 2 页,共 36 页 对一切
两互不相容,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
二、简答题
5. 如果两总体中的所有个体都进行了智力测验,这两个总体智商的平均数差异是否还需要统计检验?为什么?
【答案】如果两个中体中的所有个体都进行了智力测验,这两个总体的智商的平均数差异还是需要进行统计检验。
因为,虽然表面上看来,当抽取全部总体时,样本统计量与总体参数相同。但是作为通过测量获得的数据(智力测验)本身就是通过行为抽样获得,因此应该把两总体的智商差异看作是对智商真值之间差异的抽样,因此还是需要进行统计检验的。
当两总体中的所有个体都进行了智力测验,但不能确定两个总体的分布的时候,直接做两个总体智商的平均数差异检验是不合适的。
智力测验中一般可以获得描述性统计数据。描述统计的方法获得了一组数据的集中量数,差异量数和相关量数(常称为样本统计量),它们仅代表了某一总体中的样本所具有的特征,在进行检验前,我们并不了解样本来自的总体是否具有相同的数值特征(总体中的相应数值称为参数,总体均值记为…总体标准差记为
进行推断,以获得总体的有关特征。
检验两个总体的平均数差异不仅要考虑总体分布和总体方差,还需要注意两个总体方差是否一致,两个样本是否相关以及两个样本容量是否相同等条件。两个总体均值差异的显著性检验是通过来自均值相同的总体的样本平均数差异进行推断的。因此,两个总体均值差异的显著性检验也就是检验两个样本平均数是否来自均值相同的总体。由于两个总体之间有时是相关的,有时是独立的,因此平均数差数的显著性检验也有不同的方法。
6. 线性回归的基本假设是什么?
【答案】(1)线性关系假设
X 与Y 在总体上具有线性关系,这是一条最基本的假设。回归分析必须建立在变量之间具有线性关系的假设成立上。如果X 与Y 的真正关系不是线性,而回归方程又是按线性关系建立的,这个回归方程就没有什么意义了。非线性的变量关系,需使用非线性模型。
(2)正态性假设
第 3 页,共 36 页
总体相关系数记为P )。然而,心理研究的目的是要了解样本来自的总体的特征。为此,可以运用参数统计检验法依据样本的特征对总体的特征
正态性的假设系指回归分析中的Y 服从正态分布。这样,与某一个
量Y 的一个子总体,所有这样的子总体都服从正态分布,其平均数记作值对应的Y 值构成变方差记作
所预测得到的各个子总体的方差都相等。因此经由回归方程式所分离的误差项e ,即由特定与实际之间的差距,也应呈正态分布。误差项e 的平均数为0。所以,也有人指出线性回归中应满足变量X 没有测量误差这一严格假设,但在实际中很难满足,常常只是对X 的测量误差忽略不计。
(3)独立性假设
①指与某一个X 值对应的一组F 值和与另一个X 值对应的一组7值之间没有关系,彼此独立。
②指误差项独立,不同的X 所产生的误差之间应相互独立,无自相关
误差项也需与自变量X 相互独立。
(4)误差等分散性假设
特定X 水平的误差,除了应呈随机化的常态分配,其变异量也应相等,称为误差等分散性。不相等的误差变异量(即误差变异歧异性,),反应出不同水平的X 与Y 的关系不同,不应以单一的回归方程式去预测Y 。当研究资料具有极端值存在时,或非线性关系存
在时,误差变异歧异性的问题就容易出现。违反假设时,对于参数的估计检验力就会变得不足。
7. 统计分组应注意哪些问题?
【答案】进行统计分组时需要注意下列问题
(1)分组要以被研究对象的本质特性为基础
面对大量原始数据进行分组时,有时需要先做初步的分类,分类或分组一定是要选择与被研究现象的本质有关的特性为依据,才能确保分类或分组的正确。在心理学与教育学研究方面,专业知识的了解和熟悉对分组的正确进行有重要作用。例如在学业成绩研究中按学科性质分类,在整理智力测验结果时,按言语智力、操作智力和总的智力分数分类等。
(2)分类标志要明确,要能包括所有的数据
对数据进行分组时,所依据的特性称为分组或分类的标志。整理数据时,分组标志要明确并且在整理数据的过程中前后一致。这就是说,关于被研究现象本质特性的概念要明确,不能既是这个又是那个。另外,所依据的标志必须能将全部数据包括进去,不能有遗漏,也不能中途改变。
8. 回归分析与因素分析有什么区别?
【答案】因素分析又称因子分析,是处理多变量数据的一种统计方法,它可以揭示多变量之间的关系,其主要目的是从为数众多的可观测的变量中概括和综合出少数几个因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。
第 4 页,共 36 页 而
相关内容
相关标签