2017年东华大学旭日工商管理学院802运筹学考研强化模拟题
● 摘要
一、选择题
1. 网络计划中的某工序(i ,j ),估计的最乐观时间为a ,最可能时间为m ,最保守时间为b ,则该工序的 期望工时和方差可以按下面( )计算。
【答案】A
2. 动态规划是解决( )的一种数学方法。
A. 单阶段决策过程最优化 B. 多目标决策过程最优化 C. 多阶段决策过程最优化 D. 位目标决策过程最优化 【答案】C
【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方法
3. 线性规划的最优解有以下几种可能( )。
A. 唯一最优解 B. 多个最优解
C. 没有最优解,因为目标函数无界 D. 没有最优解,因为没有可行解 【答案】ABCD
【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优解,必在某个顶点上 得到,当该顶点唯一时,有唯一最优解; 当目标函数在多个顶点上达到最大值时,则该问题有无限多个最优解; 目标函数无界,称线性规划问题具有无界解,此时无最优解; 使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。
4. 求解指派问题的匈牙利方法要求系数矩阵中每个元素都是( )。
A. 非负的
B. 大于零 C. 无约束 D. 非零常数 【答案】A
【解析】系数矩阵中的系数表示的是费用、成本、时间等。
二、填空题
5. 运输问题任一基可行解非零分量的个数的条件是_____。
【答案】小于等于行数+列数-1
【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。
6. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:_____。
【答案】对偶单纯形法
7. 对于同一风险决策问题,与用期望收益最大准则得到相同结果的决策准则是:_____。
【答案】期望损失最小准则
【解析】对于同一风险决策问题,用期望收益最大准则和期望损失最小准则获得的决策方案相同。
8. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。
【答案】
三、证明题
9. 设
是正定二次函数
。试证:若
关于Q 共扼
分别
在两条平行
于方向P 的直线上的极小点,则方向p 与方向
【答案】因为则有从而又由于则有
分别是f (x )在两条平行于方向P 的直线上的极小点, ,
10.己知九个人v 1,v 2,…,v 9中v 1和两个人握过手,v 2和v 3各和四个人握过手,v 4,v 5,v 6,v 7各和五个人握过手,v 8,v 9各和六个人握过手,证明这九个人一定可以找出三人互相握过手。
【答案】该问题可表述为一个包含9个点(每个人代表一个点)的图的问题。依题意知 d (v l )=2,d (v 2)=d(v 3)=4,d (v 4)=d(v 5)=d(v 6)=d(v 7)=5,d (v 8)=d(v 9)=6 其中,边v i ,v j 代表v i 和v j 握过手。对于v 9,因为d (v 9)=6,所以v 4,v 5,v 6,v 7中至少有两个点与v 9之间 存在连线,设该两点为v 4和v 5。假设与v 4和与v 9相连的其他五点之间无边,
则
,与已知的 d (v 4)=5相矛盾,故假设不成立。即v 4与上述五点间必存在至少
两条边,设其中一点为v k ,则v k ,v 4,v 9两两相连,即存在三人之间互相握过手。 11.. 令试证
【答案】
为一组A 共轭向量,它们必线性无关。则
使得
用
左乘上式,并且由共轭关系可知:
令由
知BA=E,所以故得证。
12.车间内有m 台机器,有c 个修理工(m>c),每台机器发生故障率为兄,符合M/M/c/m/m模型, 试证:
【答案】由题设知
一个周期T c 等于发生故障的机器在系统中的逗留时间W s 加上机连续正常工作时间
为 服务台繁忙的概率。服务台繁忙的概率也为
,A 为为一组A 共轭向量(假定为列向量)对称正定矩阵,
。
。
并说明上式左右两端的概率意义。
,
则
,所以。
相关内容
相关标签