2018年南方医科大学药学学位分委员会306西医综合之生物化学考研强化五套模拟题
● 摘要
一、名词解释
1. 透析(dialysis )。
【答案】透析是指利用透析袋把大分子蛋白质与小分子化合物分开的方法。
2. 顺式作用(cis-acting )。
【答案】顺式作用是指位于DNA 上的序列组件只对其自身下游的序列起作用。
3. 酮症(ketosis )。
【答案】脂肪酸在肝脏可分解并生成酮体,但肝细胞中缺乏利用酮体的酶,只能将酮体经血循环运至肝外组织利用。酮症是指在糖尿病等病理情况下,体内大量动用脂肪,酮体的生成量超过肝外组织利用量时所引起的疾病。此时血中酮体升高,并可出现酮尿。
4. 核糖体循环。
【答案】核糖体循环是指多肽链的合成是从核糖体大小亚基在mRNA 上的聚合开始,到核蛋白体解聚离开mRNA 而告终的,解聚后的大小亚基又可重新在mRNA 上聚合,开始另一条新肽链的形成的循环过程。
5. 不可逆沉淀反应。
【答案】不可逆沉淀反应是指在发生沉淀反应时,蛋白质分子内部结构、空间构象失去原来的天然性质,这时蛋白质已经变性,不能再溶于原来的溶剂中的沉淀反应,如有机溶剂、重金属盐、生物碱试剂、某些酸类和碱类、加热变性等。
6. 转座子(transposon )。
【答案】转座子是指可以在同一 DNA 分子的不同位置或者不同DNA 分子之间发生转移的DNA 序列。
7. snRNA 。
【答案】snRNA 主要存在于细胞核中,也存在于细胞质中,占细胞RNA 总量
子大小为58〜300bp , 称小分子RNA 。其中
同结构的U-RNA 称
为分端有帽子结构、分子内含U 较多的称U-RNA ,不-端无帽子结构的按沉降系数和电泳迁移率排序,
如
snRNA 多与蛋白质结合在一起,等。以核糖核蛋白质(RNP )形式存在。
在hnRNA 及tRNA 的加工中有重要作用,其他snRNA 的控制细胞分化、协助细胞内物质运输、构成染色质等方面均有重要作用。
8. 葡萄糖-丙氨酸循环。
【答案】葡萄糖-丙氨酸循环是一种氨的转运过程。在肌肉中,由酵解产生的丙酮酸在转氨酶的作用下,接受其他氨基酸的氨基形成丙氨酸,丙氨酸是中性无毒物质,通过血液到达肝脏,在谷丙转氨酶的作用下,将氮基移交or 酮戊二酸生成丙酮酸和谷氨酸。谷氨酸在谷氨酸脱氢酶的作用下脱去氨基,氮进入尿素合成途径,丙酮酸在肝细胞中异生为葡萄糖再运回至肌肉氧化供能。
二、问答题
9. 在突变的大肠杆菌中下列基因的缺失将产生什么结果?
乳糖操纵子调节基因缺失;
色氨酸操纵子调节基因缺失。
【答案】(1)lac 调节基因缺失的突变体不能编码有活性的阻遏蛋白,使乳糖操纵子变为组成型的。
(2)trp 调节基因的缺失使该突变体不能产生阻遏蛋白,色氨酸操纵子的表达呈组成型。
10.McArdle 病由肌肉中糖原磷酸化酶缺陷导致,Her 病由肝中糖原磷酸化酶缺陷导致。尽管这两种酶在不同组织中催化同样的反应,但Her 病有可能导致生命危险,而McArdle 病只会在运动时产生问题。请写出糖原磷酸化酶催化的反应,并解释这两种病在严重性上的差别。
【答案】糖原磷酸化酶催化的反应是:(糖原)+Pi-(糖原)H+G-1〜P
由于G-1-P 在肝细胞中变构成G-6-P 后即可由其磷酸酶水解为葡萄糖并输出,因此肝糖原的降解对于保持血糖水平的稳定非常重要。糖原磷酸化酶一旦发生缺陷,肝糖原将不能有效降解而影响血糖水平的正常调节,严重时可能导致生命危险。
反之,肌细胞中没有G-6-P 磷酸酶,因而肌糖原的降解对于维持血糖稳定几乎没有作用,其生理意义主要是为剧烈运动的肌肉提供能源物质。糖原磷酸化酶缺陷只导致肌肉组织供能不足而不会对人体造成严重影响。
11.简述磷酸戊糖途径的生理意义,如何调节?
【答案】产生大量的NADPH 为细胞的各种合成反应提供还原力;中间产物为许多化合物的合成提供原料;与光合作用联系起来,实现某些单糖间的互变。受6-磷酸葡萄糖脱氢酶、转酮醇酶、戊糖浓度等调控。
12.膜转运蛋白在物质跨膜中起什么作用?
【答案】膜转运蛋白可帮助物质进行跨膜转运,它包括载体蛋白和通道蛋白。载体蛋白通过与被转运物质结合、变构,使物质转运过程是耗能的主动运输,有的是不耗能的易化扩散。在转
运方式中,有的载体蛋白只能转运一种物质(单运输),有的同时同向(共运输),或同时反向转运两种物质(对向运输)。通道蛋白则是靠在膜上形成极性通道转运物质,此过程都属不耗能的易化扩散,通道有的是持续开放的,有的是在特定条件控制下间断开放的,包括配体闸门通道、电压闸门通道和离子闸门通道。
13.从一种植物叶中得到了粗细胞提取液,每毫升含蛋白质32mg ,在提取条件下,
的催化反应速率为取50ml 提取液,用硫酸铵盐析分析,将饱和度
测定其反应速度为再溶于10ml 水中,此溶液的蛋白质浓度为50mg/ml, 从中取出
计算:
(1)提取过程中,酶的回收百分率;
(2)酶的提纯倍数。
【答案】酶的提纯常包括两方面的工作,一是把酶制剂从很大体积缩到较小体积;二是把制剂中大量的杂质蛋白和其他大分子分离出去。本题采用的是盐析法。为了判断分离提纯的优劣,一般用两个指标来衡量:一是总活力的回收,二是比活力提高的倍数。
粗提取液:蛋白质浓度=32mg/ml,50ml 提取液含总蛋白质=50X32=1600mg。蛋白质的活力单位数
=,现取
_
则所含蛋白质
则比活力:二活力单位数/
蛋白质14/32U/mg总活力. 提取液的沉淀物,
提纯液:蛋白质浓度=50mg/ml, 10ml 提纯液内含总蛋白质=50X10=500mg。蛋白质的活力单位数=0.65pmol/min, 现取10叫,
则所含蛋白质则比活力2=活力单位数/蛋白质
=65/50U/mg
所以酶的回收百分率=总活力2/总活力产[(65/50)×500]/[(14/32)×1600]=93%。酶的 提纯倍数=比活力2/比活力产(65/50)/(14/32)=3(倍)。
14.假定你使用脂肪细胞来研宄. 肾上腺素受体(GPCR ),此受体通过cAMP 和PKA 激活对激素敏感的脂肪酶,导致在需要能量的情况下脂肪酸的释放。当你将哺乳动物脂肪细胞与肾上腺素接触8h ,期间你每隔一段时间就测定一下游离脂肪酸的浓度。正如预期的那样,到3h 的时候,脂肪细胞产生游离的脂肪酸,以后的2h 产率开始下降,最后在剩余的时间里达到稳定的状态。解释导致脂肪酸产生波动的原因?
【答案】在长时间与肾上腺素接触以后,GPCR 对激素产生脱敏。GPCR 在细胞液部分的Ser/Thi•受到PKA (许多GPCR 下游的效应物)和BARK (—种对肾上腺素受体特异性的激酶)的作用,被磷酸化修饰。
随后抑制蛋白与这些磷酸化的位点结合,阻断受体的激活。此外抑制蛋白导致脱敏的受体被内吞,进入细胞内的一种被称为内体的囊泡。于是,产生脂肪酸的细胞因为受体的失活和内在化,导致脂肪酸的产率下降,但进入内体的受体可以去磷酸化,并重新回到质膜上,再次被激活。当受体的脱敏和再激活达到平衡的时候,脂肪酸的释放将达到相对稳定的状态。