2017年广东财经大学统计学原理考研复试核心题库
● 摘要
一、简答题
1. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当
时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
2. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为为
当总体方差
已知时,总体均值的检验统计量为:
当总体方差为:
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差
已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差
未知时,需要用样本方差代替总体方差
样本均值的抽样分布服从自由
未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量
总体方差
!还是小样本
此外还需要区分总体是否服从正态分布、总体方差是否已知等几种
度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
3. 简述系数、c 系数、系数的各自特点。
【答案】(1)相关系数是描述公式为:
式中,
列联表数据相关程度最常用的一种相关系数。它的计算《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的
列联表,是因为对于计算公式为:
列联表中的数据,计算出的系数可以控制在
(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。
(3)克莱默提出了 V 系数。V 系数的计算公式为:
当两个变量相互独立时,
当两个变量完全相关时,
所以V 的取值在
之间。如
果列联表中有一维为2,即则V 值就等于值。
4. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于A T 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布
则则
5. 下列调查问卷中的提问都有问题,请修改。
(1)您和您爱人是否对现有住房满意? (2)您最近一次是几点上班的?
(3)绝大多数喝过明光牛奶的人都认为它口味纯正,您认为是这样的吗? 【答案】(1)您对现有住房满意吗?您爱人呢? (2)您最近一次的工作是几点上班? (3)您认为明光牛奶的口味纯正吗?
6. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?
【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模
型对样本观测值的拟合优度。这是由于多重判定系数
随着样本解释变量个数的增加来越高(即
的值越
是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新
不是一个合适的指标,需加以
的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,调整。而修正判定系数归模型方面要优于多重判定系数
修正判定系数
的计算公式为
其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回
二、计算题
7. 设总体
其中未知,
为其样本。有下述统计量:
(1)试验证上述量都是的无偏估计量; (2)指出哪个估计量“最有效”。 【答案】⑴