当前位置:问答库>考研试题

2018年首都医科大学附属北京安定医院347心理学专业综合[专硕]之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 差异系数

【答案】差异系数(),又称变异系数、相对标准差等,它是一种相对差异量,用CV 来表示,为标准差与平均数的百分比。在对不同样本的观测结果的离散程度进行比较时,常常遇到下述情况:两个或多个样本所测的特质不同。如何比较其离散程度?即使使用的是同一种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?这时需要运用相对差异量进行比较。差异系数的计算公式是:(S 为某样本的标准差,M 为该样本的平均数)。差异系数在心理与教育研宄中常常应用于同一对象的不同领域或同一领域的不同对象。

2. 协方差分析

【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。

3. 总体

【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。

4. 个体

【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。

5. 无偏估计

【答案】无偏估计是评价估计量的好坏的一个指标。设参数则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称

的无偏估计量。如样本均值

6. 样本

【答案】样本(sample )亦称“子样”,统计学术语,指按一定规则从统计总体中抽取的若干个体的集合或对总体X 的n 次观测结果

独立样本。

根据样本容量(通常以30为界线)的大小,可区分为大样本和小样本。根据两样本来自的两总体是相关还是独立,可分为相关样本和是总体均值的无偏估计量。 为参数的估计量为若满足,

二、简答题

7. 简述检验的假设。 【答案】检验的假设主要有:

检验中的分类必须相互排斥,以保证每一个观测值被(1)分类相互排斥,互不包容。

被划分到更多的类别中去的情况。

(2)观测值相互独立。各个被试的观测值之间彼此独立,这是最基本的一个假定。

(3)期望次数的大小。为了努力使分布成为X2值合理准确的近似估计,每一个单元格中的期望次数应该至少在5个以上。

8. 回归分析与因素分析有什么区别?

【答案】因素分析又称因子分析,是处理多变量数据的一种统计方法,它可以揭示多变量之间的关系,其主要目的是从为数众多的可观测的变量中概括和综合出少数几个因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。

9. 中数,众数,几何平均数,调和平均数各适用于心理与教育研究中的哪些资料?

【答案】中数的适用条件:①当一组观测结果中出现两个极端数目时;②当次数分布的两

划分到一个类别或另一个类别之中。此外,分类必须互不包容。保证不会出现某一观测值同时

端数据或个别数据不清楚时,只能取中数作为集中趋势的代表值;③当需要快速估计一组数据的代表值时,也常用中数。

众数的适用条件:①当需要快速而粗略地寻求一组数现代心理与教育统计学据的代表值时;②当一组数据出现不同质的情况时,可用众数表示典型情况,如工资收入、学生成绩等常以次数最多者为代表值;③当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;④当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标;⑤当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。

几何平均数的适用资料:当要计算教育经费增加率、学习方面的进步率和学生或人口増加率的估计时,可使用几何平均数。

调和平均数的适用资料:在心理与教育研究方面的应用,主要是用来描述学习速度方面的问题。调和平均数作为一种集中量数,在描述速度方面的集中趋势时,优于其他集中量数。在有关研究学习速度的实验设计中,反应指标一般常取两种形式:一是工作量固定,记录各被试完成相同工作所用的时间。二是学习时间一定,记录一定时间内各被试完成的工作量。由于反应指标不同,在计算学习速度时也不一样,这是应用调和平均数要特别注意的地方。

10.直条图适合哪种资料? 绘制直条图时应注意哪些问题?

【答案】条形图,又称直条图,主要用于表示离散型数据资料,即计数数据。它是以条形的长短表示各事物间数量的大小与数量之间的差异。条形图中一个轴是分类轴,表示类别;另一个轴是数量轴,表示大小多少,描述计量数据。这个轴上数据单位的大小取决于原始数据。

绘制条形图需要注意以下几点:

(1)尺度须从零点开始,要等距分点,一般不能断开。

(2)条宽与间隔的比例要适当,条形图是以条形的长短表明数量的多少。

(3)直条的排列顺序可按时间序列、数量多少以及相比较事物的固有序列。

(4)图形区域中条形的顶端和下端尽量少用数据标签。

(5)调节过长条形有两种方法,一种是调整尺度,另一种是采用折叠法、回转法来调整条形本身。

11.简述算术平均数的使用特点

【答案】算术平均数是所有观察值的总和除以总频数所得之商,简称为平均数或均数。计算公式:式中N 为数据个数,为每一个数据,为相加求和。

(1)算术平均数的优点是:①反应灵敏;②严密确定。简明易懂,计算方便;③适合代数运算;④受抽样变动的影响较小。

(2)除此之外,算数平均数还有几个特殊的优点:①只知一组观察值的总和及总频数就可以求出算术平均数。②用加权法可以求出几个平均数的总平均数。③用样本数据推断总体集中