当前位置:问答库>考研试题

2017年石家庄经济学院统计学(同等学力加试)复试实战预测五套卷

  摘要

一、简答题

1. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?

【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模

型对样本观测值的拟合优度。这是由于多重判定系数

随着样本解释变量个数的增加

来越高(即的值越是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新

不是一个合适的指标,需加以的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,

调整。而修正判定系数

归模型方面要优于多重判定系数修正判定系数的计算公式为

2. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?

【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;

②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。

③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差

⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。

⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。

(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求

方差为总体方差的

态分布。

其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回),不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正

3. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?

【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。

检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显

著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分

析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

4. 中心极限定理。

【答案】设随机变量

也就是说,当n 趋于无穷大时,的分布趋向于标准正态分布 相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方

5. 统计数据质量的基本标准是什么?

【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。

6. 举例说明什么是列联表的独立性检验。

【答案】变量分为定量变量和定性变量。对于定量变量我们用回归分析等方法机进行研宄。对于定性变量,如吸烟是否与患癌症有关、性别与是否喜欢数学有关、年龄和喜欢的电视节目类型是否有关等等,我们对其进行列联 表的独立性检验。列联表的独立性检验是对一个分类变量的检验,因其分析过程可以通过列联表的方式呈现,故又可称为列联分析。

独立性检验就是分析列联表中行变量和列变量是否相互独立。

例如:为了研究年龄和喜欢的节目类型是否有关系,某单位对闲暇时间进行了全面调查,根据不同年龄档和喜爱收看电视节目的类型进行了如下的统计分类:

按照假设检验的步骤

按照假设检验的步骤:

设定假设:

(行变量与列变量独立)

(行变量与列变量不独立) (其中是行变量,是列变量)

选取统计量:

(其中,

第i 行第j 列类别的期望频数;并且

为列联表中第i 行第j 列类别的实际频数;

最后带入数字,进行判断。看是否有行向量与列向量独立。若拒绝原假设,即行向量与列向量不独立,即年龄和喜欢的节目类型有关系。反之,年龄和喜欢的节目类型无关。 为列联表中

二、计算题

7. 盒中放有12个兵兵球,其中9个是新的。第一次比赛时从中任取3个来使用,比赛后仍放回盒中。第二 次比赛时,再从盒中任取3个球,求:(1)第二次取出的球都是新球的概率;(2)已知第二次使用时,取到的是 三只新球,而第一次使用时取到的是一只新球的概率。

【答案】(1)令表示第一次任取3个球使用时,取出Z 个新球的事件

B 表示第二次任取的3个球都是新球的事件。则有:

根据全概率公式,计算第二次取出的球都是新球的概率为:

(2)根据条件概率公式,计算第二次取到三个新球时第一次取到一个新球的概率为: