当前位置:问答库>考研试题

2017年中国科学技术大学材料科学基础(同等学力加试)考研复试核心题库

  摘要

一、名词解释

1. 晶格常数

【答案】在材料科学研宄中,为了便于分析晶体中粒子排列,可以从晶体的点阵中取出一个具有代表性的基本单元(通常是最小的平行六面体)作为点阵的组成单元,称为晶胞;晶格常数指的就是晶胞的边长,也就是每一个立方格子的边长。沿晶胞边方向且长度与边长相等的矢量称为晶胞基矢,分别用a 、b 、c 表示。晶格常数是晶体物质的基本结构参数,它与原子间的结合能有直接的关系,晶格常数的变化反映了晶体内部的成分、受力状态等的变化。

2. 中间相

【答案】中间相是指合金中组元之间形成的、与纯组元结构不同的相。在相图的中间区域。

二、简答题

3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?它的性质如何递变?

【答案】同一周期元素具有相同原子核外电子层数,但从左一右,核电荷依次增多,原子半径逐渐减小,电离能増加,失电子能力降低,得电子能力增加,金属性减弱,非金属性増强;同一主族元素最外层电子数相同,但从上一下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性増加,非金属性降低。

4. 说说你对材料的成分、组织、工艺与性能之间关系的理解。

【答案】材料的成分、组织、工艺与性能之间的关系非常紧密,互相影响。材料的性能与它们的化学成分和组织结构密切相关,材料的力学性能往往对结构十分敏感,结构的任何微小变化,都会使性能发生明显变化。

如钢中存在的碳原子对钢的性能起着关键作用,许多金属材料中一些极微量的合金元素也足以严重影响其性能。然而由同一元素碳构成的不同材料如石墨和金刚石,也有着不同的性能,有些高分子的化学成分完全相同而性能却大不一样,其原因是它们有着不同的内部结构。

材料的内部结构可分为不同层次,包括原子结构、原子的排列方式,以及显微组织和结构缺陷。如果同样的晶体材料,它的晶粒或是“相”的形态和分布改变,就可以大大地改善它的性能。无论是金属、陶瓷、半导体、高分子还是复合材料,它们的发展都与成分和结构密切相关。只有理解和控制材料的结构,才能得到人们所要求的材料性能。

而材料的制备/合成和加工不仅赋予材料一定的尺寸和形状,而且是控制材料成分和结构的必要手段。如钢材可以通过退火、淬火、回火等热处理来改变它们内部的结构而达到预期的性能,冷乳硅钢片经过复杂的加工工序能使晶粒按一定取向排列而大大减少铁损。有时候可以说没有一种合

成加工上的新的突破,就没有某一种新材料。如有了快速冷却的加工方法,才有了非晶态的金属合金。

5. 什么是空间点阵与晶体结构?对于同一种空间点阵,晶体结构是否唯一,为什么?请指出图中Cr 和CsCl 的晶体结构个属于那种空间点阵,并说明理由。

【答案】(1)空间点阵是指周围环境相同的阵点在空间规则排列的三维阵列;晶体结构是指晶体中实际质点的具体排列情况。

(2)对于同一种空间点阵,晶体结构不唯一,因为晶体结构指的是实际质点的具体排列情况,它们能组成各种类型的排列,实际存在的晶体结构是无限的。

Cr 属于体心立方点阵,CsCl 属于简单立方点阵。Cr 的晶胞中,Cr 占据体心和八个顶角位置,(3)

每个原子的周围环境都相同,即构成了体心立方点阵。csci 中,cr 占据八个顶角,它们的周围环境都相同;对于来说,也具有相同情况,若将看成顶点,也是简单立方点阵。

6. 对于固体材料将其晶粒细化后其力学性能会有何种变化? 解释原因。并回答对于铸件能否采用再结晶的方法细化晶粒,为什么?

【答案】固体材料将其晶粒细化后,会出现细晶强化的现象,即材料的强度、硬度、塑性、韧性同时提高。这是因为:由于晶粒细小,可供塞积位错的滑移面较短,塞积位错的数目较少,由位错塞积引起的应力集中分散于各个晶粒中,使其屈服强度升高。

另一方面,由于晶粒细小,在相同的外力作用下,处于滑移有利方向的晶粒数较多,应力分散在各晶粒中,即使在受到大的塑性变形时,仍然保持其较好的性能,而不致开裂,从而提高材料的軔性。

对于金属铸件则不能采用再结晶的方法细化晶粒,这是因为:一方面再结晶过程需要在一定的形变基础上,由储存能提供一定的能量进行晶粒的重新形核、长大,铸件没有进行过形变。另一方面,由于再结晶温度过低,铸件也不可能通过重结晶相变细化晶粒。

7. 简述回复再结晶退火时材料组织和性能变化的规律;为何实际生产中常需要再结晶退火?

【答案】(1)回复再结晶时材料组织变化:该退火过程主要分为回复、再结晶和晶粒长大三个阶段。在回复阶段,由于发生大角度晶界迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学组织上几乎看不出变化。在再结晶阶段,首先是在畸变度大的趋于产生新的无畸变晶粒核心,然后逐渐消耗周围的变形机体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。最后,在表面晶界能的驱动下,新的晶粒互相吞食长大,从而得到在该

条件下一个比较稳定的尺寸。

(2)回复再结晶时材料性能变化:在回复阶段,由于金属仍保持很高的位错密度,所以强度和硬度变化很小,但是再结晶后,位错密度显著降低,从而导致强度与硬度明显下降;回复阶段,由于晶体点阵中点缺陷的存在,使电阻明显下降,电阻率明显提高;回复阶段,大部分或全部的宏观内应力可以消除,而微观内应力则只有通过再结晶方可全部消除;回复前期,亚晶粒尺寸变化不大,但在后期,尤其接近再结晶时,亚晶粒尺寸就显著增大;变形金属的密度在再结晶阶段发生急剧増高。

8. 何为上坡扩散?形成上坡扩散的热力学条件是什么?

【答案】物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。例如铝铜合金时效早期形成的富铜偏聚区,以及某些合金固溶体的调幅分解形成的溶质原子富集区等,这种扩散称为“上坡扩散”。上坡扩散的真正驱动力是化学位梯度,而非浓度梯度,虽然扩散导致浓度梯度上升,但化学位梯度却是下降的。据此,形成上坡扩散的热力学条件是

三、计算题

9. 铁碳相图

(1)图(a )为铁碳相图,图(b )、(c )、(d )分别为3个不同成分(设为0.45%C、3.4%C、4.7%C)的铁碳合金缓冷凝固组织(包括随后的固态相变、硝酸酒精浸蚀)。说明它们各是哪个成分的合金,为什么?

(2)分析图(d )组织的凝固过程,并计算该合金中白色长条状组织的重量相对