当前位置:问答库>论文摘要

题目:两类生物模型解的性质

关键词:Chemostat模型 捕食-食饵系统 主特征值 分歧 稳定性

  摘要

Chemostat又叫恒化器,是重要的生物数学模型,是一个用于单种或多种微生物种群连续培养的实验装置.恒化器模型不仅是简化了的湖泊模型,                          可用于模拟湖泊和海洋中单细胞藻类浮游生物的生长,而且也被广泛地应用于微生物的生产、废料处理、生物制药、食品加工及生态系统尤其是水生生态                的管理、预测和环境污染的控制.在这个培养器中,营养物从一端以一定的比率连续输入到均匀搅拌的容器中,与微生物反应后,同时又和代谢中的副产物                 及微生物从另一端以相同的比率连续流出以保持其容量不变.恒化器中营养物的输入和流出近似模拟了自然界的连续代谢作用,流出的微生物相当于自然界中             常常发生的物种非自然死亡或迁出.因此,只要适当地调节恒化器内各个反应物的浓度或者调节其它控制参数就可以达到预期的目标,可见对chemostat                   模型的研究十分必要.借助于数学方法对这类系统进行建模、分析、控制和优化,这对恒化器的设计,生产成本的降低等都有着十分重要的意义.                                                                                                                                                                              第一章主要研究一类具有内部抑制剂非均匀搅拌的chemostat模型,其中一个物种以降低自身的增长率为代价产生抑制剂来抑制另一个物种的生长.                      模型由一组反应扩散方程来描述:                                                                                                                        $$egin{array}{lll}S^{primeprime}-af_1(S)u-bf_2(S)v=0, & xin                                                                                     (0,1),\ u^{primeprime}+af_1(S)u-eta pu=0, & xin (0,1),\                                                                                       v^{primeprime}+b(1-k)f_2(S)v=0,& xin (0,1),\                                                                                                     p^{primeprime}+bkf_2(S)v=0 ,  & xin (0,1),end{array}$$                                                                                           边界条件为 $$egin{array}{lll}S^{prime}(0)=-1,quad                                                                                                S^{prime}(1)+gamma S(1)=0,\ u^{prime}(0)=0,quadquad                                                                                            u^{prime}(1)+gamma u(1)=0,\ v^{prime}(0)=0,quadquad                                                                                            v^{prime}(1)+gamma v(1)=0,\ p^{prime}(0)=0,quadquad                                                                                            p^{prime}(1)+gamma p(1)=0.end{array}$$                                                                                                            其中$f_i(S)=S/(a_{i}+s)(i=1,2)$是Monod型功能反应函数$.~S(x)$为营养物浓度,!!!$u(x)$为被抑制物种浓度$,~v(x)$为以消亡自身为代价释放抑制剂的物种浓度. $p(x)$为$v(x)$释放的抑制剂的浓度$.~a$和$b$分别是物种$u$和$v$的最大生长率,$eta>0,                                                                   kin [0,1).$                                                                                                                                                                                                                                                                                              在这一章中分别以物种$u$, $v$的最大生长率作为参数,利用分歧理论得到分歧解在全局范围内的存在,                                                           并且运用线性算子的扰动理论和分歧解的稳定性理论证明了共存解在适当条件下是稳定的.                                                                                                                                                                                                                           第二章对一类捕食-食饵模型解的分歧和稳定性进行了讨论.该模型对应的平衡态系统为                                                                         $$egin{array}{ll}                                                                                                                                   Delta u+au-u^2-frac{a_{1}v}{u+k_{1}}u=0, & xin Omega,\                                                                                         Delta v+bv-frac{a_{2}}{u+k_{2}}v^{2}=0,& xin Omega,\                                                                                             u=v=0, & xin partialOmega.end{array} $$                                                                                                         其中$Omega$是$R^{N}$中具有光滑边界$partialOmega$的有界区域$,~u$                                                                                   $,~v$分别表示在区域$Omega$内中食饵(prey)和捕食者(predator)的密度,                                                                                   参数$a,$ $a_{1},$ $a_{2},$ $b,$ $k_{1},$                                                                                                             $k_{2}$都是正常数,其中$a$,                                                                                                                           $b$是食饵$u$和捕食者$v$的生长率$,~k_{1}$,                                                                                                            $k_{2}$是环境本身对于食饵$u$和捕食者$v$保护程度.                                                                                                     文中利用分歧理论的方法得到了局部分歧解的存在性,同时判定了这个分歧解是无条件稳定的.\