当前位置:问答库>考研试题

2018年华中科技大学马克思主义学院312心理学专业基础综合之现代心理与教育统计学考研仿真模拟五套题

  摘要

一、概念题

1. 次数

【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。

2. 集中量数与差异量数

【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。

3. 标准误差

【答案】标准误差指描述样本均值对总体期望值的离散程度的统计量。指样本平均数与总体平均数之间的误差,即随机抽样误差分布的标准差。样本平均数的标准误差与总体标准差成正比,与样本的容量的平方根成反比。公式为:式中为总体标准差,N 为样本的大小。标准误差是具体描述样本平均数的抽样误差的。标准误误愈大,抽样误差愈大,则样本平均数越不可靠;反之,标准误差越小,表明样本误差愈小,样本平均数越可靠。

4. 协方差分析

【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。

二、简答题

5. 回归分析与相关分析的区别和联系是什么?

【答案】相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中;

二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关,质量相关和品质相关,回归分析还包括非线性回归等。

6. 欲考察甲乙丙丁四人对十件工艺美术品的等级评定是否具有一致性,用哪种相关方法?

【答案】应该用肯德尔W 系数。

肯德尔W 系数又称肯德尔和谐系数,是表示多列等级变量相关程度的一种方法,适用于两列以上的等级变量

7. 试解释交互作用。

【答案】(1)下面是两个2×2的实验设计范式:

图1 2×2实验设计图示例

在实验甲中,A 因素从变化

还是时,无论

在还

是水平

与的差都

是说明A 因素的变化与或

称之为没有交互作用。

在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,

素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。

如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的

变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交互作用,则两线平行,表示因素之间相互独立;两线越不平行,代表因素之间交互作用越明显。一般而言,显著的交互作用,在交互作用图上会出现交叉的折线。当然,这只是直观示意,交互作用是否显著,必须进行方差分析。

图2 交互作用图解

8. 为什么要做区间估计?怎样对平均数作区间估计?

【答案】(1)做区间估计是因为

①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。

这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。

②区间估计在一定意义上弥补了点估计的不足之处。

区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。

(2)对平均数进行区间估计的步骤如下

①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误

有两种情况:

a. 当总体方差

b. 当总体方差未知时,

用样本的无偏估计量即方差样本的有偏估计方差则

已知时,

计算,如果计算的是