当前位置:问答库>考研试题

2017年湖南科技大学管理学院630统计学考研导师圈点必考题汇编

  摘要

一、简答题

1. 简述复合型时间序列的预测步骤。

【答案】复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:

(1)确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;

(2)建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;

(3)计算出最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。

2. 统计数据质量的基本标准是什么?

【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。

3. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?

【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。

影响抽样平均误差的因素有四个:

(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。

(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。

(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。

(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。

4. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?

【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为

第 2 页,共 56 页

由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性

犯取伪错误的可能性

一办法只有增大样本容量,这样既能保证满足取得较小的

5. 试述统计总体及其特征。 又能取得较小的值。 势必增大

也就是说,

的大小和显著性水平的大小成相反方向变化。解决的唯

【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。

总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。

6. 解释多重判定系数和调整的多重判定系数的含义和作用。

【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为

(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得

的值永远小于

而且的值不会由于模型中自变量个数的增加而越来越接近1,

其计算公式为

7. 全概率公式与逆概率公式分别用于什么场合?

【答案】(1)全概率公式为:

其中,是互不相容的事件且

如果对于某一复杂事件A 的概率,能够构造合适的完备事件组,使得这些事件的概率和给定这些事件下A 的条件概率较易于确定,就可以用全概率公式。

(2)逆概率公式也称贝叶斯公式,即

式中:

发生概率。

第 3 页,共 56 页 表示完备事件组。 中每个事件的逆概率公式是要在事件A 已经发生的条件下来计算完备事件组

8. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计

模型用于预测,影响预测精度的因素有哪些? 具有哪些统计特性?若

)。独立性【答案】(1

)误差项是一个服从正态分布的随机变量,且独立,即

0的随机变量,即线性函数;②无偏性

具有最小方差的估计量。 对于所有的值分别是的方差都相同。 意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值为(2

)模型参数的最小二乘估计的统计特性:①线性,即估计量的无偏估计;③有效性为随机变量的是所有线性无偏估计量中

(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心间越窄,精度越高。

9. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?

【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行

的检验,如果次不同每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概区率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。

10.利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?

【答案】相关系数r 的取值范围在关关系;若

相关关系;若

相关关系。

说明两个变量之间的线性关系越强

时. 可视为中度相关

;说明两个变量之间的线性关系越弱。对于一时,

可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:

当时。视为低度相关;当之间。若表明变量之间存在正线性相表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当表明x 与y 之间为完全正线性时,y 的取值完全依赖于X ,二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性

相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。

第 4 页,共 56 页