当前位置:问答库>考研试题

2018年清华大学医学院306西医综合之生物化学考研核心题库

  摘要

一、名词解释

1. 氧化磷酸化。

【答案】氧化磷酸化是指在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作用。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式。

2. 胰岛素。

【答案】胰岛素是一种蛋白质激素,由胰腺的胰岛乙细胞分泌。它由A 、B 两条肽链,共51个氨基酸组成,并含有3个二硫键。胰岛素有十分广泛的调节细胞代谢的生物功能。主要作用部位在肌肉、肝脏和脂肪等组织。胰岛素能增加细胞膜的通透性,促进葡萄糖的氧化和储存,刺激蛋白质、脂肪以及核酸的合成。它还能促进细胞生长和分化。人的胰腺每日可产生1〜2mg 胰岛素,进食后其分泌量增加。体内缺少胰岛素会引起代谢障碍,特别是使细胞不能有效地利用葡萄糖,造成血液中葡萄糖含量高,过多的糖随尿排出;糖尿病即因此得名。

3. 移码突变(frame-shiftmutation )。

【答案】移码突变是指由于碱基的缺失或插入突变导致三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变,从而翻译出完全不同的蛋白质的突变。

4. 神经节苷脂(gangliosides )。

【答案】神经节苷脂是由神经酰胺和至少含有一个唾液酸残基的寡糖组成,寡糖链与神经酰胺Q 上的羟基以糖苷键相连,主要存在于大脑灰质和神经节细胞。

5. 蛋白质的等离子点。

【答案】蛋白质的等离子点是指蛋白质在不含任何其他溶质的纯水中的等电点,即在纯水中蛋白质的正离子数等于其负离子数时的pH 。

6. DNA 的双螺旋

【答案】DNA 的双螺旋是一种核酸的构象,在该构象中,两条反向平行的多核苷酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。碱基平面与假设的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm ,碱基堆积距离为组成,碱基按两核苷酸之间的夹角是每对螺旋由10对碱基配对互补,彼此以氢键相联系。维持DNA 双螺旋结构稳定的力主要是碱

基堆积力和氢键,以及离子键。双螺旋表面有宽窄深浅不一的一个大沟和一个小沟。

7. 泛肽途径。

【答案】泛肽途径又称碱性系统,是指生物体内广泛存在的细胞内的蛋白降解系统,主要降解短寿命蛋白质和反常蛋白。

8. 蛋白质拼接(protein splicing )。

【答案】蛋白质拼接是指将一条多肽链中的一段氨基酸序列切除、同时将两端的氨基酸序列连接在一起的翻译后加工方式。

二、问答题

9. 简述嘌呤霉素对多肽合成的抑制作用。

【答案】嘌呤霉素的结构与酷氨酰端上的残基的结构十分相似。它能合核糖体A

上的肽酰基,形成肽酰嘌呤霉素,但其位结合,并能在肽酰转移酶的催化下。接受P

位肽酰

断。

许多蛋白质合成抑制剂具有高度专一性,特别是抗生素,在蛋白质合成研宄中是一个有力的工具。这类抑制剂都能特异地抑制蛋白质合成的某个步骤,由此可以阐明蛋白质生物合成的机制。嘌呤霉素是酪氨酰的类似物,具有某种竞争抑制的性质。

10.磷酸葡糖变位酶在糖原降解及合成中均至关重要,为什么?

【答案】糖原降解时该酶可将糖原磷酸解产物葡萄糖-1-磷酸转化为葡萄糖-6-磷酸,后者可以游离的葡萄糖形式进入血液(肝脏)或经由糖酵解途径供能(肌肉和肝脏)。糖原合成时该酶可将葡萄糖-6-磷酸转化为葡萄糖-1-磷酸,后者再与UTP 反应生成UDP-葡萄糖,用作糖原合酶的底物。

11.与直接经由糖酵解途径降解成丙酮酸相比,3分子葡萄糖先通过戊糖磷酸途径转化成2分子果糖6-磷酸和1分子甘油醛-3-磷酸后再进入糖酵解途径,其产量有何区别?

但通过戊【答案】直接经由糖酵解途径的3分子葡萄糖在转化成丙酮酸后可产生6分子联建不是酯键而是酰肽键。肽酰-嘌呤霉素复合物很易从核糖体上脱落,从而使蛋白质合成过程中

糖磷酸途径绕行时只能产生5分子

12.结合肌红蛋白和血红蛋白的氧合曲线,简述动物体内的氧从肺中转运到肌肉中的过程。肺泡中的

是肌红蛋白的

【答案】当的比血

肌肉的毛细管中血红蛋白在肺泡中的Y 值是是20T 〇rr ,

血红蛋白的

在肌肉毛细管中的Y

值是为时,肌红蛋白处于半饱和状态,所以在同样的条件下,肌红蛋白

红蛋白的(26 Toir )低得多,反映了肌红蛋白对氧的高亲和性。肌红蛋白和血红蛋白

下,如在肺部(大约100 的生理作用直接与它们在低氧压下对氧的相对亲和性有关。当在高

约50 Torr以下的Toir )时,肌红蛋白和血红蛋白对氧的亲和性都很高,两者几乎都被饱和了。然而当处于低于大时,肌红蛋白对氧的亲和性明显要比血红蛋白对氧的亲和性高得多。在肌

低血红蛋白对氧的亲和性低,所以红细胞中血红肉等组织的毛细管内,由于蛋白载有的很多氧被释放出来,释放出来的氧都可被肌肉中的肌红 蛋白结合。肌红蛋白和血红蛋白对氧亲和性的差异形成了一个有效地将氧从肺转运到肌肉的氧转运系统。

13.计算一分子丙氨酸脱氨后彻底氧化形成ATP 的分子数。

【答案】丙氨酸脱氨形成丙酮酸,丙酮酸氧化脱羧产生1分子

分子在三羧酸循环中,有4次脱氢,其中3次产生

再加上由琥珀

酰生成7.5分子成1.5分

子通过呼吸链可生成2.51次产生生所以共产

生生成琥珀酸产生1分

分子。所以1分子丙氨酸脱氨后彻底氧化形成分子数为12.5。

14.三联体密码子共有几个?它们代表几种氨基酸?这些密码在全生物界是否完全统一?

1个氨基酸密码子【答案】三联体密码子共有64个,其中61个密码子代表20种氨基酸,(AUG )

兼作起始密 码子,3个(UAA ,UAG 和UGA )为终止密码子,这些密码子在生物界统一,但并非绝对通用,有例外情况。

15.结合激素的作用机制,说明肾上腺素如何通过对有关酶类的活性的复杂调控,实现对血糖浓度的调控。

【答案】人体饥饿时,血糖浓度较低,促进肾上腺髓质分泌肾上腺素。肾上腺素与靶细胞膜上的受体结合,活化了邻近的G 蛋白,后者使膜上的腺苷酸环化酶(AC )活化,活化的AC 催化ATP 环化生成cAMP , cAMP 作为激素的细胞内信号(第二信使)活化蛋白激酶A (PKA ),PKA 可以催化一系列的酶或蛋白的磷酸化,改变其生物活性;引起相应的生理反应。一方面,PKA 使无活性的糖原磷酸化酶激酶磷酸化而被活化,后者再使无活性的糖原磷酸化酶磷酸化而被活化,糖原磷酸化酶可以催化糖原磷酸解生成葡萄糖,使血糖浓度升高。另一方面,PKA 使有活性的糖原合成酶磷酸化而失活,从而抑制糖原合成,也可以使血糖浓度升高。

16.RNA 聚合酶对NTP 的值在起始阶段高于在延伸阶段。你认为这对基因表达的调节有何意义。

【答案】RNA 聚合酶对NTP 的值在起始阶段高于在延伸阶段意味着RNA 聚合酶在延伸阶段对NTP 的亲和 力高于起始阶段RNA 聚合酶对NTP 的亲和力,在NTP 的浓度较低的情况下,不多的NTP 优先与催化延伸反应 的RNA 聚合酶结合,这显然可以保证已进入延伸阶段的转录反应能够最终完成,这时新的基因转录的起始受到 限制。