2018年上海市培养单位上海天文台811量子力学考研基础五套测试题
● 摘要
一、填空题
1. 总散射截面Q 与微分散射截面【答案】
中运动,其状态波函数
的关系是_____。
2. 一质量为的粒子在一维无限深方势阱为_____, 能级表达式为_____。 【答案】
3. 粒子在一维势阱中运动,波函数为
则
【答案】
则的跃变条件为_____
。若势阱改为势垒
的跃变条件为_____。
4. (1)自由粒子被限制在x 和x+1处两个不可穿透壁之间,按照经典物理. 如果没有给出其他资料,则粒子在 x 和x+1/3之间的概率是_____. A.025 B.033 C.011 D.067
(2)上题中,按照量子力学. 处于最低能态的粒子在x 和x+1/3之间被找到的概率是_____. A.019 B.072 C.033 D.050
【答案】(1)B
【解析】按照经典力学,粒子处于空间的概率密度为常数,故概率与体积成正比,
即所求概率为
(2)A
【解析】取x 为原点,则有波函数为
所求概率即
5. 描述微观粒子运动状态的量子数有_____; 具有相同n 的量子态,最多可以容纳的电子数为_____个。
【答案】
6 设体系的状态波函数为.量
的关系为_____。
如在该状态下测量力学是F 在确定的值则力学量算符与态矢
【答案】
二、简答题
7. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
8. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
9. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
10.描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
11.何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
12.厄米算符的本征值与本征矢分别具有什么性质? 【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
问是否
13.什么是隧道效应,并举例说明。
【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。
14.放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?
【答案】与量子隧穿效应有关。
三、证明题
15.(1)设(2)试将【答案】(1)
与pauli 算符对易,证明
表示成
的线性叠加. 其中为单位算符.
利用
化简可得:
(2)
16.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值
由此得
表示所属的本征函数,则
即是实数。
因为是厄密算符,于是有
四、计算题
17.—自旋中的矩阵为
(1)不考虑空间运动,由求任意时刻f 的波函数
的粒子的哈密顿算符
为实常数。
确定自旋运动定态能量. 与定态波函数并求
和
的几率。 时波函数为
其中
已知
时,
其中,
,
在表象
(2)同时考虑空间运动和自旋运动,已知