2017年曲阜师范大学教育科学学院347心理学专业综合之现代心理与教育统计学考研仿真模拟题
● 摘要
一、概念题
1. 逐步回归
【答案】逐步回归是多元回归中选择自变量,建立最优回归方程的一种方法。其基本原理和过程是:按各个自变量对因变量作用的大小,从大到小逐个引入回归方程。每引入一个自变量都要对回归方程中每一个自变量(包括刚刚引入的那个)的作用进行显著性检验,若发现作用不显著的自变量,就要将其剔除(因为引入新的自变量后,原来方程中显著作用的自变量有可能变成不显著)。这样逐个地引进和剔除,直至没有自变量可引入也没有自变量应从方程中剔除为止,这时的回归方程一般来说是最优的。
2. 嵌套设计
【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的
B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。
3. 无偏估计
【答案】无偏估计是评价估计量的好坏的一个指标。设参数则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称
的无偏估计量。如样本均值
4. 个体
【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。
5. 相关系数
【答案】相关系数是两列变量间相关程度的指标。相关系数的取值在-1到+1之间,常用小数表示,其正负号表示方向。如果相关系数为正,则表示正相关,两列变量的变化方向相同。如果相关系数为负值,则表示负相关,两列变量的变化方向相反。相关系数取值的大小表示相关的强
第 2 页,共 32 页 的估计量为若满足,为参数是总体均值的无偏估计量。
弱程度。如果相关系数的绝对值在1.00与0之间,则表示不同程度的相关。绝对值接近1.00端,一般为相关程度密切,接近0值端一般为关系不够密切。0相关表示两列变量无任何相关性。
6. 抽样误差
【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。
二、简答题
7. 简述编制分组次数分布表的步骤。
【答案】(1)求全距。全距指最大数和最小数两个数据值之间的差距。从被分组的数据中找出最大数和最小数,二者相减所得差数就是全距。
(2)决定组距与组数。组距是指任意一组的起点和终点之间的距离,用符合i 表示。决定组距的大小需要以全距为参考。全距大,则组距可以大一些;全距小,则组距可以小一些。
组数的多少根据组距的多少来定。如果数据个数在100以上,习惯上一般分10〜20组,但经常取12〜16组。数据个数较少时,一般分为7〜9组。如果数据的总体分为正态,那么可以
,这样可使分组满足渐进最优关系。用下面的经验公式计算组数(K )
为数据个数,K 取近似整数)。
(3)列出分组区间。分组区间即一个组的起点值和终点值之间的距离,又叫组限。起点值称为组下限,终点值称为组上限,组限有表述组限和精确组限两种。在列出分组区间时要注意:最高组区间应包含最大的数据,最小组应包含最小的数据;最大组或最小组最好是组距i 的倍数;各分组区间一般在纵坐标上按照顺序排列,数值大的分组区间排在上面,数值小的分组区间排在下面;等级次数时,要按照精确组限将数据归类划分到相应的组别中。
(4)等级次数。依次将数据等级到各个相应的组别内,一般用画线计数或写“正”字的方法。
(5)计算次数。根据登记的结果计算各组的次数,计算各组次数的总和即总次数。另外,要核对各组次数总和与数据的总个数是否相等。
8. 一个变量的两个水平间的相关很高,是否说明两水平的均数间没有差异呢?为什么?举例说明。
【答案】不能说明两水平的均数间没有差异。
(1)相关关系是指两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定两类现象之间哪个是因,哪个是果。相关的情况可以有三种:一种是两列变量变动方向相同,即一种变量变动时,另一种变量也同时发生或大或小与前一种变量同方向的变动,称为正相关。如身高与体重的关系。第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小但与前一列变量指向相反的变动。例如初打字时练习次数越多,出现错误的量就越少。第三种相关是零相关,即两列变量之间无关系。比如学习成绩与身高的关系。
第 3 页,共 32 页 (N
(2)当一个变量的两个水平的相关很高时,需要考虑这种相关是正相关还是负相关,即考虑其变化发展的方向。
(3)当一个自变量的两个水平的相关很高时,不能说明两个水平的均数之间没有差异。因为两组变量的相关系数大小只是表明两组的线性关系强弱。即使两组变量成完全正相关,即相关系数为+1,也不能说明两组变量的平均数没有差异。比如两组变量的对应关系
为即这时两组变量的相关系数为+1,而两组变量的均数不不
同的。因为这是在同一个变量的不同水平,而且缺乏足够的信息分析。如果要知道这两个水平均数之间是否有差异,可以采用t 检验等方法获得。
9. 试比较完全随机设计与随机区组设计的优缺点。
【答案】(1
)完全随机设计
计的方差分析的方差分析,就是对单因素组间设
在这种实验研究设计中,各种处理的分类仅以单个实验变量为基础,因而,把它称为单因素方差分析或单向方差分析。随机区组设计由于同一区组接受所有实验处理,使实验处理之间有相关,因此又称之为相关组设计,或称被试内设计。
(2)与完全随机设计相比,随机区组设计最大优点是考虑到个别差异的影响。这种由于被试之间性质不同导致产生的差异就称为区组效应。随机区组设计可以将这种影响从组内变异中分离出来,从而提高效率。随机区组设计设计也有不足,主要表现为划分区组困难,如果不能保证同一区组内尽量同质,则有出现更大误差的可能。
(3)与随机区组设计相比,完全随机设计的优点是完全按照随机化的原则安排实验处理和被试,完全随机设计的缺点是实验误差既包括实验本身的误差,又包括被试个别差异引起的误差,无法分离,被试的数量随着实验处理数的増加而增加,因而它的效率受到一定限制。
10.如何区分点二列相关与二列相关?
【答案】(1)点二列相关法(point-biserail correlation )就是考察两列观测值一个为连续变
,另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。 量(点数据)
,另一个二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点数据)
也是连续变量不过被按照某种标准人为的划分的二分变量之间相关程度的统计方法。
(2)点二列相关与二列相关的区别
二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的是非类客观选择题,计算该题目的区分度就应该选用点二列相关。二者之间的主要区别是二分变量是否为正态分布。总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这时,不管观测数据代表的是一个真正的二分变量,还是一个基于正态分布的人为二分变量,这时就用点二列相关。当确
第 4 页,共 32 页
相关内容
相关标签