当前位置:问答库>考研试题

2018年中央财经大学保险学院396经济类联考综合能力之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

2.

设矩阵

求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

3. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

矩阵A 满足AB=0, 其

为标准形,并写出所用正交变换;

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

于是

4.

已知通解是

.

, 证明

【答案】

由解的结构知

是4阶矩阵,其中

是齐次方程组

故秩

是4维列向量. 若齐次方程组Ax=0的的基础解系.

又由

可知综上可知

即故

都是

的解.

线性无关.

得的基础解系.

那么

二、计算题

5. 设向量组B

:

线性表示为

无关的充要条件是矩阵K 的秩R (K )=r.

【答案】

方法一、记

于是

,则有B=AK.(2)

但K 含r 列,

即R (K )=r,k 为列满秩矩阵.

必要性:设向量组B 线性无关,知R (B )=r.又由B=AK,

知充分性:设R (K )=r.要证B 组线性无关. 由于

因此,向量组B 线性无关.

方法二、由(2)式,因R (A )=S,A 为列满秩矩阵,则知R (_B)=R(K )。于是B 组线

性无关

6. 求下列非齐次方程组的一个解及对应的齐次方程组的基础解系:

(1

)(2

【答案】(1)増广矩阵

能由向量组A

:

,其中K

矩阵,且A 组线性无关. 证明B 组线性