2017年哈尔滨商业大学统计学复试仿真模拟三套题
● 摘要
一、简答题
1. 简述描述离散程度的统计量和适用类型。
【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:
极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。
(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。
(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。
2. 试述统计总体及其特征。
【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。
总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。
3. 简述时间序列的组成要素。
【答案】时间序列的组成要素分为4种,即趋势或长期趋势、季节性或季节变动、周期性或
循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;
(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
4. 什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?
【答案】在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。
在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。
5. 简述时间序列的预测程序。
【答案】在对时间序列进行预测时,通常包括以下几个步骤:
(1)确定时间序列所包含的成分,也就是确定时间序列的类型;
(2)找出适合此类时间序列的预测方法;
(3)对可能的预测方法进行评估,以确定最佳预测方案;
(4)利用最佳预测方案进行预测。
6. 什么是置信区间估计和预测区间估计?二者有何区别?
【答案】(1)置信区间估计,它是对x 的一个给定值_求出y 的平均值的估计区间,这一区间称为置信区间;预测区间估计,它是对x 的一个给定值求出y 的一个个别值的估计区间,这一区间称为预测区间。
(2)置信区间估计和预测区间估计的区别:置信区间估计是求y 的平均值的估计区间,而预测区间估计是求y 的一个个别值的估计区间;
对同一个
区间要比置信区间宽一些。
这两个区间的宽度也是不一样的,预测
二、计算题
7. 通达出租汽车公司为确定合理的管理费用,需要了解出租车司机每天的收入(元)与其行驶时间(小时)和行驶里程(公里)之间的关系,为此随机调查了20个出租车司机,根据有关数据进行回归分析,得到表的数据结果:
表
根据以上结果回答下列问题:
(1)试建立每天的收入对行驶时间和行驶里程的线性回归方程,并解释回归系数的实际意义。
(2)计算可决系数
(3)若显著性水平并说明它的实际意义。 回归方程的线性关系是否显著?(注 (4)计算回归系数检验的统计量。
【答案】(1)根据已知条件和表中的数据可以得出,出租车司机每天的收入; y 对其行驶时
间和行驶里程的线性回归方程为:
表明当行驶里程不变时,出租车每天行驶时间増加1个小时,收入就会相应地平均增加
增加元;
表明当行驶时间不变时,出租车每天行驶里程增加1公里,收入就会相应地平均元。
(2)可决系数为:
说明估计的该线性模型对观测值的拟合程度较好,出租车每天的收入变差中,
有
可以由收入与行驶时间和行驶里程之间的线性关系来解释。
(3)对回归方程的显著性检验,首先建立假设
检验统计量的值为:
给定显著性水平
由于故拒绝原假设
里程之间的线性关系是显著的。
(4)回归系数检验统计量的值分别为:
8. 已知某商店销售的三种商品的销售额及销售量增长幅度资料如表所示。
表
不全为零。 表明回归方程是显著的,即收入与行驶时间和行驶
相关内容
相关标签