2018年大连海洋大学水产715高等数学Ⅱ之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知矩阵
可逆矩阵P ,使
和
若不相似则说明理由.
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即
关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.
2. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
3. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
求
是3维非零列向量,若线性无关;
且
线性无关.
令
非零可知,是A 的个
线性无关,得齐次线性方程组
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
即
所以
专注考研专业课
13年,提供海量考研优质文档!
故
4
. 设三维列向量组
(Ⅱ)
当
线性无关,列向量组
线性无关.
和向量组
线性表示;
(Ⅰ)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
构成的向量组一定线性相关
,故存在一组不
即,
线性无关
,故
不全为0
,
则
线性表示.
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
即存在非零列向量
不全为
0.
使得可同时由向量组
【答案】(
Ⅰ)由于
4
个三维列向量全为0
的数
又向量组记和向量组向量
使得
线性无关;
向量组
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为_意非零常数.
因此,所有非零列向量
所有非零解_
t 为任
二、计算题
5. 设
问λ为何值时,此方程组有惟一解、无解或有无穷多解? 并在有无穷多解时求其通解. 【答案】由于系数矩阵是方阵,其行列式
相关内容
相关标签