当前位置:问答库>考研试题

2018年大连海洋大学水产715高等数学Ⅱ之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

已知矩阵

可逆矩阵P ,使

若不相似则说明理由.

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B

的特征值也是

时,由秩

A 可以相似对角化.

有2个线性无关的解,

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.

2. 证明n

阶矩阵

与相似.

【答案】

设 分别求两个矩阵的特征值和特征向量为,

故A 的n 个特征值为

且A 是实对称矩阵,则其一定可以对角化,且

所以B 的n

个特征值也为

=-B的秩显然为1,故矩阵B 对应n-1

重特征值

对于n-1

重特征值由于矩阵(0E-B )

的特征向量应该有n-1个线性无关,进一步

矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可

知n

阶矩阵

与相似.

3. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

是3维非零列向量,若线性无关;

线性无关.

非零可知,是A 的个

线性无关,得齐次线性方程组

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

专注考研专业课

13年,提供海量考研优质文档!

4

. 设三维列向量组

(Ⅱ)

线性无关,列向量组

线性无关.

和向量组

线性表示;

(Ⅰ)证明存在非零列向量

使得

可同时由向量组

时,

求出所有非零列向量

构成的向量组一定线性相关

,故存在一组不

即,

线性无关

,故

不全为0

,

线性表示.

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

即存在非零列向量

不全为

0.

使得可同时由向量组

【答案】(

Ⅰ)由于

4

个三维列向量全为0

的数

又向量组记和向量组向量

使得

线性无关;

向量组

(Ⅱ)易知,

求出齐次线性方程组下面将方程组

于是,方程组的基础解系可选为_意非零常数.

因此,所有非零列向量

所有非零解_

t 为任

二、计算题

5. 设

问λ为何值时,此方程组有惟一解、无解或有无穷多解? 并在有无穷多解时求其通解. 【答案】由于系数矩阵是方阵,其行列式