2017年河南财经政法大学统计学院统计学综合复试仿真模拟三套题
● 摘要
一、简答题
1. 解释总体分布、样本分布和抽样分布的含义。
【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。
样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。
一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。
2. 简述古典概率法和经验概率法如何定义事件发生的概率。
【答案】概率的古典定义是,如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A 发生的概率为该事件所包含的基本事件数m 与样本空间中所包含的基本事件数n 的比值,记为:
经验概率又称主观概率,是指对一些无法重复的试验,只能根据以往的经验,人为确定这个事件的概率。
3. 何谓统计分组?统计分组有哪些作用?
【答案】根据统计研宄的目的和客观现象的内在特点,按某个标志(或几个标志)把被研宄的总体划分为若干个不同性质的组,称为统计分组。
统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。
4. 解释多元回归模型、多元回归方程、估计的多元回归方程的含义。
【答案】(1)多元回归模型:设因变量为y 如何依赖于自变量个自变量分别为描述因变量和误差项的方程称为多元回归模型。其一般形式可表示为:
式中(2)多元回归方程:
根据回归模型的假定有
方程,它描述了因变量y 的期望值与自变量
(3)估计的多元回归方程:
回归方程中的参数
数据去估计它们。当用样本统计
量
时,就得到了估计的
多元回归方程,其一般形式为:
是模型的参数为误差项。 称为多元回归之间的关系。 是未知的,需要利用样本去估计回归方程中的未知参
数
式中
是参数称为偏回归系数。
5. 简述复合型时间序列的预测步骤。
【答案】复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:
(1)确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;
(2)建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;
(3)计算出最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。
6. 简述指数平滑法的基本含义。
【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第
形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生
不同的影响。当
值
大的权数;同样时,预测值仅仅是重复上一期的预测结果;
当时,预测值就是上一期实际
越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的
但实际应用时,还应考虑预测误差,这里仍用误差期的预测值等于
期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊的估计值是因变量y 的估计值。其中
反应就越慢。一般而言,当时间序列有较大的随机波动时,
宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的
最后的值。
均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为二、计算题
7. 某商场商品销售资料如表所示。
表
要求:
(1)计算销售额指数、商品价格指数和销售量指数。
(2)分析各因素变动对销售额指数影响的相对程度和绝对额。
【答案】(1)销售额指数 商品价格指数 销售量指数
(2)即报告期与基期相比,这三种商品的销售额升高了41.12%, 价格的变动使销售额提高了10.32%; 销售量的变动使销售额提高了27.92%。
从绝对变动水平来看:
三者之间的数量关系为
即报告期与基期相比,这两种商品的销售额増加了810千元,其中由于价格的变动使销售额増加了260千元,销售量的变动使销售额增加了550千元。
8. 甲、乙两家化肥厂生产化肥,甲厂平均每小时生产100袋化肥,且服从正态分布,标准差为25袋;乙厂 平均每小时生产110袋化肥,也服从正态分布,标准差为30袋。现从甲、乙两厂各随机抽取5小时计算单位时 间的产量,问出现乙厂比甲厂单位时间产量少的概率为多大?
【答案】由于两个已知总体都服从正态分布,所以5小时的单位时间产量和
正态分布且相互独立,从而服从以均值为方差为也分别服从的正态分布,即
相关内容
相关标签