当前位置:问答库>考研试题

2017年湖南师范大学数学与计算机科学学院432统计学[专业硕士]之统计学考研冲刺密押题

  摘要

一、简答题

1. 全概率公式与逆概率公式分别用于什么场合?

【答案】(1)全概率公式为:

其中,是互不相容的事件且

如果对于某一复杂事件A 的概率,能够构造合适的完备事件组,使得这些事件的概率和给定这些事件下A 的条件概率较易于确定,就可以用全概率公式。

(2)逆概率公式也称贝叶斯公式,即

式中:表示完备事件组。

中每个事件的逆概率公式是要在事件A 已经发生的条件下来计算完备事件组

发生概率。

2. 简述指数平滑法的基本含义。

【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第

形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。 期的预测值等于

期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊

使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生

不同的影响。当

大的权数;同样时,预测值仅仅是重复上一期的预测结果;

当时,预测值就是上一期实际

越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的

但实际应用时,还应考虑预测误差,这里仍用误差反应就越慢。一般而言,当时间序列有较大的随机波动时,

宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的

均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为

最后的值。

3. 在研究总体特征时,往往采用抽样调查,试给出采用抽样的理由。

【答案】

抽样调查()是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本进行观察研宄,以抽样样本的指标去推算总体指标的一种调查。随机原则要求所有调查单位都有一定的概率被抽取。根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研宄的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。抽样调查同其他调查比较,具有 如下几个特点:第一,样本单位按随机原则抽取,排除了主观因素对选取样本单位的影响;第二,能够根据部分 调查的实际资料对调查对象的总体的数量特征进行推断,从而达到对调查总体的认识;第三,在抽样调查中会存 在抽样误差,但是这个误差可以事先计算并加以控制。因此,抽样调查既能节省人力、物力、财力,又可以提高资料的时效性,而且能取得比较正确的全面统计资料,具有许多优点。

4. 给出显著性检验中,P 值的含义,以及如何利用P 值决定是否拒绝原假设。

【答案】P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设。P 值越小,我们拒绝原假设的 理由就越充分。

从研宄总体中抽取一个随机样本,计算检验统计量的值和概率P 值,即在假设为真的前提下,检验统计量大于或等于实际观测值的概率。如果

数取值;如果

即一般以为显著

,结果更倾向于接受假定的参数取值。

为非常显著,其含义是样本间的差异由抽样误差所致的概率

时小于0.05或0.01。但是,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。

样本间的差异比时更大,这种说法是错误的。

5. 解释总体分布、样本分布和抽样分布的含义。

【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。

样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。

一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计

说明是较强的判定结果,拒绝假定的参说明说明是较弱的判定结果,拒绝假定的参数取值;如果

量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。

6. 说明计算统计量的步骤。

【答案】计算

(2)将

(3)将平方结果

统计量的步骤:

之差平方; 除以(1)用观察值减去期望值(4)将步骤(3)的结果加总,即得:

7. 简述描述离散程度的统计量和适用类型。

【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。

(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:

极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。

(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。

(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。

8. 中心极限定理。

【答案】设随机变量

相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方