● 摘要
随着科学技术的发展,人们的感官得到了有效的延伸,认识事物的能力也得到了不断的提高。在过去几十年的成像光谱技术迅猛发展,高光谱图像的分析和处理成为当前国内外遥感图像处理领域的研究热点之一。高光谱图像的突出特点是光谱分辨率高,可获得观测对象的几十个或几百个光谱波段的图像信息,而成像光谱系统获得的连续波段宽度一般都小于10nm。高光谱图像是一种三维数据,成像光谱仪为每个像素点提供一条近似连续的光谱曲线,而所有像素的相同波段对应一个二维图像。高光谱遥感图像目标检测技术是高光谱遥感理论与应用研究的重要环节。高光谱图像目标检测是利用已知的目标光谱信息在高光谱图像中对感兴趣的目标进行检测、确认的技术。高光谱图像目标检测技术在军事和民用领域中都有重要的应用价值。在军事领域可用于对飞机、坦克等军事目标进行检测、定位,也可对伪装的军事目标进行检测。在民用领域可应用于公共安全、环境监控等领域。本文在深入研究经典高光谱图像目标检测方法的基础上,提出了两个新的高光谱目标检测框架。(1) 由于目前存在的高光谱图像目标检测算法,大多是基于统计模型的检测方法,利用了二阶统计量进行目标检测。然而,现实中的目标往往服从的是非高斯分布。根据ICA的理论基础,针对非高斯分布目标的检测问题应使用高阶统计量进行检测。本文中提出两种采用高阶统计量的检测方法,多种目标材料检测器(Multiple Materials Detector,MMD)和基于拟牛顿法多种目标材料检测器(Quasi-Newton based Multiple Materials Detector,QNMMD)。文章中从理论和实验结果均说明,相对于现有的基于二阶统计量的检测方法,基于高阶统计量的检测方法有更好的检测效果。(2) 在本文中,利用高光谱图像的稀疏模型,提出了两种检测方法。第一种是基于凸松弛法高光谱图像目标探测器(Convex Relaxation Based Target Detector, CRBTD)。这个算法中的创新点在于提出了一个连续的凸函数近似 范数。利用这个方法,可以将很难求解的NP-hard优化问题转化为容易求解的凸优化问题,并且可以找到更准确的稀疏解。在实验中,相比于目前存在的基于稀疏模型的高光谱目标检测算法,CRBTD具有更好的检测结果。第二种提出的算法是,基于k-mean聚类重建光谱库的高光谱图像目标检测算法。在此算法中,通过对高光谱图像进行k-mean聚类、目标光谱剔除并整合的处理,实现了光谱库的自动构造。在真实高光谱数据的实验结果中可以看到,基于自动光谱库构造的稀疏检测算法在检测效果上优于传统的统计算法。
相关内容
相关标签