2018年南京大学社会学院626心理学综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 古典概率
【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。
2. 频率
【答案】频率(frequency )①亦称“相对频数”。某随机事件A , 在N 次试验中出现的次数n 与试验总次数N 的比值。亦称事件A 发生的频率。记为其值介于0〜1之间。事件的频率越大,说明它出现的可能性越大;反之则越小。一个事件的频率不是一个固定的数值,与总次数N 有关,且即使再重复N 次试验,次数n 也可能不同。但在大量重复试验中频率具有稳定性,即当试验次数N 无限增大时,频率F 会在某个固定值上下波动,而且偏差越来越小。②简谐振动基本物理量。物体每秒振动的次数。单位是赫兹(Hz )。在数学关系上频率是物体振动周期的倒数。
3. 相关系数
【答案】相关系数是两列变量间相关程度的指标。相关系数的取值在-1到+1之间,常用小数表示,其正负号表示方向。如果相关系数为正,则表示正相关,两列变量的变化方向相同。如果相关系数为负值,则表示负相关,两列变量的变化方向相反。相关系数取值的大小表示相关的强弱程度。如果相关系数的绝对值在1.00与0之间,则表示不同程度的相关。绝对值接近1.00端,一般为相关程度密切,接近0值端一般为关系不够密切。0相关表示两列变量无任何相关性。
4. 统计检验力
【答案】统计检验力又称假设检验的效力是指假设检验能够正确侦察到真实的处理效应的能力,也指假设检验能够正确地拒绝一个错误的虚无假设的概率,因此效力可以表示为检验的效力越高,侦察能力越强。影响统计检验力的因素有:①处理效应大小,处理效应越明显,越容易被侦查到,假设检验的效力也就越大。②显著性水平a , a 越大,假设检验的效力也就越大。③检验的方向性,单侧检验侦察处理效应的能力高于双侧检验。④样本容量,样本容量越大,标准误越小,样本均值分布越集中,统计效力越高。
二、简答题
5. 试举例说明各种数据类型之间的区别。
【答案】根据不同的分类标准,心理与教育科学研究中的数据可以区分为不同的类型。 (1)从数据的观测方法和来源划分,研究数据可区分为计数数据和测量数据两大类。
①计数数据(count data ), 是指计算个数的数据,一般属性的调查获得的是此类数据,它具有独立的分类单位,一般都取整数形式。
②测量数据(measurement data ), 又称计量数据是指借助于一定的测量工具或一定的测量标准而获得的数据。
(2)根据数据反映的测量水平,可把数据区分为称名数据、顺序数据、等距数据和比率数据四种类型。
①称名数据(nominal data)只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小,在教育和心理类调查研究中,有关被试属性的调查资料,大多属于这类数据。
②顺序数据(ordinal data )是指既无相等单位,也无绝对零的数据,是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。如学生的等级评定、喜爱程度、品质等级、能力等级、兴趣等。这种数据不具有相等单位,也没有绝对零点,只能排出一个顺序,不能指出相互间的差别大小这类数据不能进行加减乘除运算。
③等距数据(interval data )是有相等单位,但无绝对零的数据,如温度、各种能力分数、智商等。只能使用加减运算,不能使用乘除运算。
④比率数据(ratio data )既表明量的大小,也有相等的单位,同时还具有绝对零点,如身高、体重、反应时、各种感觉阈值的物理量等都属于这种数据类型。
(3)按照数据是否具有连续性,把数据划分为离散数据和连续数据。
①离散数据(discrete data)又称为不连续数据、间断数据。这类数据在任何两个数据点之间所取的数值的个数是有限的。
②连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。至少在理论上从最高到最低之间都可以进一步细分。
6. 回归分析与因素分析有什么区别?
【答案】因素分析又称因子分析,是处理多变量数据的一种统计方法,它可以揭示多变量之间的关系,其主要目的是从为数众多的可观测的变量中概括和综合出少数几个因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。
7. 方差分析的适用条件是什么? 主要用来检验什么?
【答案】进行方差分析时有一定的条件限制,数据必须满足以下几个基本假定条件,否则
由它得出的结论将会产生错误。
(1)总体正态分布
方差分析同Z 检验及t 检验一样,也要求样本必须来自正态分布的总体。在心理与教育研究领域中,大多数变量是可以假定其总体服从正态分布,一般进行方差分析时并不需要去检验总体分布的正态性。当有证据表明总体分布不是正态时,可以将数据做正态转化,或采用非参数检验方法。
(2)变异的相互独立性
总变异可以分解成几个不同来源的部分,这几个部分变异的来源在意义上必须明确,而且彼此要相互独立。
(3)各处理内的方差一致
在方差分析中用MSw 作为总体组内方差的估计值,求组内均方MSw 时,相当于将各个处理中的样本方差合成,它必须满足的一个前提条件就是,各实验处理内的方差彼此无显著差异。这一假定若不能满足,原则上是不能进行方差分析的。
方差分析主要用来检验两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
8. 估计总体平均数落入该区间的正确可能性概率为1-«,犯错误的可能性概率为«。1. 在进行差异的显著性检验时,若将相关样本误作独立样本处理,对差异的显著性有何影响,为什么?
【答案】(1)在进行差异的显著性检验时,首先需要考虑样本是否服从正态分布,如果服从正态分布,还需要考虑总体方差是否已知,然后看样本是否是独立样本。若将相关样本误作独立样本处理,则忽视了样本数据之间的一致性,导致错误地运用计算公式,差异的显著性也会受到误估,使本来可能有显著差异变成无显著差异。
(2)因为相关样本与独立样本不同,会运用不同的计算方法计算显著性。相关样本与独立样本是根据两个样本是否来自同一个总体来划分的。
①如果是独立样本,其和(或差)的方差等于各自方差的和,即
在进行差异的显著性检验中采用以下公式:
②相关样本之间存在着一一的对应关系。如果是相关样本前后两次结果则相互影响,而不独立。当两个变量之间相关系数为r 时,两变量差的方差为:
在进行差异的显著性检验中采用以下公式: