当前位置:问答库>考研试题

2017年湖北大学运筹学复试仿真模拟三套题

  摘要

一、简答题

1. 在线性规划的灵敏度分析中,当基变量的价值系数变化后,最优表中哪些数据会发生变化,怎样变化。

【答案】基变量的价值系数变化后,可能会引起伏表中基变量检验数的变化。 设Cr 是基变量Xr 的系数。因

,当Cr 变化△Cr ,时,就引起C B 的变化,这时有:

可见,当Cr 变化成△Cr 后,最终表中的检验数是:

2. 简述割平面法的基本思想。

【答案】这个方法的基础仍然是用解线性规划的方法去解整数规划问题,首先不考虑变量xi 是整数这一条件, 但增加线性约束条件(用几何术语,称为割平面)使得由原可行域中切割掉一部分,这部分只包含非整数解,但没有切割掉任何整数可行解。这个方法就是指出怎样找到适当,使切割后最终得 到这样的可行域,它的一个有整数坐标的极点的割平面(不见得一次就找到)恰好是问题的最优解。

二、计算题

3. 写出下列问题的动态规划的基本方程。

【答案】(l )设状态转移方程为阶段状态s k 到第n 阶段使

,最优值函数

最大的值,则动态规划的基本方程为:

,或

(2)设状态变量为

,状态转移方程为

表示从第k

,最优值函数

表示

在s k 状态下从第k 阶段到第n 阶段使

最小的值,则动态规划的基本方程为:

4. 在下面的线性规划问题中找出满足约束条件的所有基解,指出哪些是基可行解,并代入目标函数,确定哪一个是最优解。

(1)

(2)

【答案】 (1)在第二个约束条件两边同时乘以-1,得到该线性规划问题的系数矩阵

因为P 1、P 2线性无关,故有

令非基变量x 3=x4=0,解得x 1=1,x 2=2,故有基可行解x ()=(1, 2, 0, 0),z 1=8。 因为P 1、P 3线性无关,故有

令非基变量x 2=x4=0,解得因为P 1、P 4线性无关,故有

令非基变量x 2=x3=0,解得因为P 2、P 3线性无关,故有

故有基可行解

不是可行解。

1

T

令非基变量x 1=x4=0,解得因为P 2、P 4线性无关,故有

令非基变量x 1=x3=0,解得因为P 3、P 4线性无关,故有

令非基变量x 1=x2=0,解得

在z 1,z 2,z 3中,z 3为最大值,所以最优解(2)其系数矩阵为

因为P 1、P 2线性无关,故有

令非基变量x 3=x4=0,解得因为P 1、P 3线性无关,故有

令非基变量x 2=x4=0,解得因为P 1、P 4线性无关,故有

令非基变量x 2=x3=0,解得因为P 1、P 4线性无关,故有

不是可行解。 为基可行解,

不是可行解。

不是可行解。

不是可行解。 故有基可行解