当前位置:问答库>考研试题

2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题

  摘要

目录

2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题(一) ... 2 2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题(二) . 10 2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题(三) . 19 2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题(四) . 29 2018年天津大学环境科学与工程学院832运筹学基础之运筹学考研仿真模拟五套题(五) . 40

一、填空题

1. 无向连通图G 是欧拉图的充要条件是_____。

【答案】G 中无奇点

2. 若x 为某极大化线性规划问题的一个基可行解,

用非基变量表达其目标函数的形式为

则X 为该LP 最优解的条件是:_____。

【答案】

。 【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以

3. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。

【答案】,对于一切有。

【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,

此时令非基变量

, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应

于基B 的基可行解

为。由最优解的判别定理,若对于一

, 则所求得的基可 行解为最优解。

4. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。

【答案】

【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。

二、选择题

5. 如果要使目标规划实际实现值不超过目标值,则相应的偏离变量应满足( )。

A.d 十>0;

B.d 十=0;

C.d 一=0;

D.d 十>0且d 一>0

【答案】B

【解析】实际实现值不超过目标值,即.

A. 原问题的最优解x i =0

B. 在最优生产计划中第i 种资源己完全耗尽

C. 在最优生产计划中第i 种资源有剩余

D. 无法判断

【答案】B

【解析】当影子价格为0时,表示某种资源未得到充分利用; 而当资源的影子价格不为零时,表明该种资源在生产中己耗费完毕。

7. 企业进行库存管理与控制的目标不包括以下( )。

A. 保证生产或销售的需要

B. 降低库存占用资金

C. 降低花在存储方面的管理费用

D. 较低的货损

【答案】D

【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。

8. 根据对偶解的经济含义,若天然气资源是我国的一种稀缺能源资源,其影子价格必然是( )。

A. 不能确定

B.<0

C.=0

D.>0

【答案】D

【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越高,说明该资源在系 统内越稀缺,增加该资源的供应量对系统目标函数值贡献也越大。天然气是资源是一种稀缺能源资源,其影子价 格必然大于0。 ,根据,可知 6. 己知Y i 为线性规划的对偶问题的最优解,若Y i >0,说明( )。

三、简答题

9. 试简述求解整数规划模型的分枝定界法剪枝的几种情况。

【答案】(l )某枝已经达到其范围内的最优解;

(2)某枝域内没有可行解时,即是不可行域;

(3)某枝所得数据不优于当前最优解时。

10.试说明C 一W 节约算法的基本思想,你认为还可用它解决哪些方面的问题? 举例加以说明。

【答案】(1)C 一W 节约算法的基本思想(以旅行商问题为例):优先考虑将节约值最大的弧插入到旅行线路中, 这样在满足访问若干城市各一次且仅一次的条件下,最大限度地缩短了路程。

(2)举例。运用C 一W 节约算法:设n 个不同用户为n 个点,维修点为基点,n 个用户点中从点i 到点j 的 长度为工人骑摩托车的交通时间加上点i 与点j 维修时间总和的一半。优先考虑将节约值最大的长度加入工作线路中去进行迭代。

四、计算题

11.某出版单位有4500个空闲的印刷机时和4000个空闲的装订工时,拟用于下列4种图书的印刷和装订。已知各种书每册所需要的印刷和装订工时如下表所示:

设x j 表示第j 种书的出版数量(单位:千册),据此建立如下线性规划模型:

用单纯形法求解得最终的单纯形表如表所示:(x 5,x 6为松弛变量)

试回答以下问题:(假定各问题条件相互独立,也就是在其他条件与原问题相同时来回答本问题)

(l )据市场调查第4种书最多能销5000册,当销量多于5000时,超量部分每册降价2元,据此假设求新的最优解

(2)经理对不出版第2种书提出意见,要求该种书必须出2000册,求此条件下的最优解; (3)作为替代方案,第2种书仍须出2000册,印刷由该厂承担,而装订工序交别的厂承担,但装订每册成 本比该厂高0.5元,求新最优解。