2018年河北工业大学理学院811量子力学考研强化五套模拟题
● 摘要
一、简答题
1. 写出泡利矩阵。 【答案】
2. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;
(3)分裂能级间距与能级有关; (4)由于电子具有自旋。
3. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
4. 已知为一个算符满足如下的两式问何为厄密算符?何为么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
5. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
6. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
7. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
8. 厄米算符的本征值与本征矢分别具有什么性质? 【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
9. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数
已知:另一部分
很小,可以看作是加于
它的本征值
上的微扰. 写出在非简并
状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】
一级修正波函数为二级近似能量为其中
10.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
二、证明题
11.设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为
【答案】设在
或
证明这一点。
表象中,这自旋态的表示为:
则由自旋x 分量和; y 分量算符的表本为:
根据题给条件,有:
由此得:即:
或
要么自旋朝下
即都为自旋分量的本征态。在
这就意味着,此态要么是自旋朝上
这两个本征态中,
测量自旋分量的平无值分别为
和
12.试证明,表象经么正变换后,不改变算符本征值。 【答案】设
为幺正变换,则:
可得:(其中)
可见,本征值不变。
三、计算题
13.自旋在
方向的粒子,磁矩为
置于沿z
方向的磁场中,写出其哈密顿量,并求其
概率幅与时间的关系。 【答案】将上述自旋在
方向的粒子(譬如电子)置于沿z 方向的磁场B 中观察其概率幅的
变化。这时的哈密顿矩阵为:
式中,
是泡利矩阵,
为粒子的磁矩。电子负电,从而自旋磁矩
与角动量的方
向相反。当自旋角动量和磁场同沿z 方向时,磁矩沿-z 方向。 可得薛定谔方程为:
即:
积分后得:
取t=0时刻的初始条件为则:
式中,
围绕极轴转动,相
由上式可以看出,粒子的自旋矢量始终与极轴保持固定的夹角但以角速度当于经典电磁学中磁偶极子在外磁场中拉莫旋进的角速度,如图所示。
相关内容
相关标签