2018年仲恺农业工程学院森林培育314数学(农)之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
矩阵
且A 可对角化,
求行列式
逆
其中E 是n 阶单位矩阵.
使或1.
2.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
第 2 页,共 42 页
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。 3.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
第 3 页,共 42 页
4.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
二、计算题
5. 已知3阶矩阵A 的特征值为1, 2, 3, 求
【答案】
令
的特征值. 又
:
是
的全部特征值. 由特是
因1,2, 3是A 的特征值,
故
为3阶方阵,
于是
第 4 页,共 42 页