当前位置:问答库>考研试题

2017年吉林省培养单位长春应用化学研究所811量子力学考研冲刺密押题

  摘要

一、简答题

1. 波函数

是否描述同一状态?

【答案】

与描写的相对概率分布完全相同,描写的是同一状态。

2. 写出电子自旋的二本征值和对应的本征态。 【答案】

3. 已知为一个算符么正算符?

【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。

4. 如果算符表示力学量那么当体系处于的本征态时,问该力学量是否有确定的值? 【答案】是,其确定值就是在本征态的本征值。

5. 简述波函数和它所描写的粒子之间的关系。

【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数

则在

用算符的本征函数

展开

态中测量粒子的力学量^得到结果为

的几率是

得到结果在

范围内的几率

6. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。

【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。

第 2 页,共 47 页

满足如下的两式问何为厄密算符?何为

7. 什么是量子跃迁?什么是选择定则?线偏振光和圆偏振光照射下的选择定则有什么区别? 【答案】量子跃迁是指在某种外界作用下,体系在不同的定态之间跃迁。

选择定则:从一个定态到另一个定态之间的跃迁概率是否为零,也即跃迁是否是禁戒的。 线偏振光选择定则:圆偏光选择定则:

8. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

9. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

10.坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为

测不准关系为

为粒子可能处于的态,那么这些态的任意线性组合

二、证明题

11.试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

12.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

具有周期性,

第 3 页,共 47 页

【答案】(1)证:对于厄米算符

所以

即本征值为实

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

三、计算题

13.对于一个限制在边长为L 的立方体中的自旋为1/2、质量为m 的粒子,计算基态与第二激发态的本征能量及相应的本征态波函数.

【答案】这是一个三维方势阱问题,例子波函数为

S 为自旋波函数. 可分离变量得

最终解得

第 4 页,共 47 页