2017年湘潭大学材料与光电物理学院833材料科学基础(一)考研题库
● 摘要
一、名词解释
1. 中间相
【答案】中间相是指合金中组元之间形成的、与纯组元结构不同的相。在相图的中间区域。
2. 致密度
【答案】致密度是表示晶胞中原子所占的体积与晶胞体积的比值,是衡量原子排列紧密程度的参数,致密度越大,晶体中原子排列越紧密,晶体结构越致密。
3. 置换固溶体
【答案】溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体。当溶剂和溶质原子直径相差不大,一般在15%以内时,易于形成置换固溶体。铜镍二元合金即形成置换固溶体,镍原子可在铜晶格的任意位置替代铜原子。
4. 共价健
【答案】共价健是指由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键,具有饱和性和方向性。
5. 间隙固溶体
【答案】间隙固溶体是指若溶质原子比较小时可以进入溶剂晶格的间隙位置之中而不改变溶剂的晶格类型所形成的固溶体。
二、简答题
6. 画出相图。
【答案】如图所示。
图
7. 对于固体材料将其晶粒细化后其力学性能会有何种变化? 解释原因。并回答对于铸件能否采用再结晶的方法细化晶粒,为什么?
【答案】固体材料将其晶粒细化后,会出现细晶强化的现象,即材料的强度、硬度、塑性、韧性同时提高。这是因为:由于晶粒细小,可供塞积位错的滑移面较短,塞积位错的数目较少,由位错塞积引起的应力集中分散于各个晶粒中,使其屈服强度升高。
另一方面,由于晶粒细小,在相同的外力作用下,处于滑移有利方向的晶粒数较多,应力分散在各晶粒中,即使在受到大的塑性变形时,仍然保持其较好的性能,而不致开裂,从而提高材料的軔性。
对于金属铸件则不能采用再结晶的方法细化晶粒,这是因为:一方面再结晶过程需要在一定的形变基础上,由储存能提供一定的能量进行晶粒的重新形核、长大,铸件没有进行过形变。另一方面,由于再结晶温度过低,铸件也不可能通过重结晶相变细化晶粒。
8. 在晶体中插入附加的柱状半原子面能否形成位错环?为什么?
【答案】不能形成位错环。假设能形成位错环,由于插入的是附加的柱状半原子面,则该位错环各处均为刃型位错,根据刃型位错的则该位错环每一线元对应的b 应沿着径向,也就是说环上各线元对应的b 不同,这与一条位错线只有一个b 相矛盾。
9. 谈谈你对高强度材料的理解。
【答案】对于结构材料,最重要的性能指标之一是强度。强度是指材料抵抗变形和断裂的能力,提高材料的强度可以节约材料,降低成本。人们在利用材料的力学性能时,总是希望所使用的材料具有足够的强度,人们希望合理运用和发展材料强化方法,从而挖掘材料性能潜力的基础。 从理论上讲,提高金属材料强度有两条途径:
(1)完全消除内部的位错和其他缺陷,使它的强度接近于理论强度。目前虽然能够制出无位错的高强度金属晶须,但实际应用它还存在困难,因为这样获得的高强度是不稳定的,对操作效应和表面情况非常敏感,而且位错一旦产生后,强度就大大下降。
(2)在金属中引入大量的缺陷,以阻碍位错的运动,例如金属材料的强化手段一般有固溶强化、细晶强化、第二相粒子强化、形变强化等。综合运用这些强化手段,也可以从另一方面接近理论强度,例如在铁和钛中可以达到理论强度的38%。
10.如果沿FCC 晶体的[110]方向拉伸,请写出可能启动的滑移系统。
【答案】可能启动的滑移系统有四个,分别为
11.试画出立方晶体中的(123)晶面和
【答案】如图所示。
晶向。
图
12.分析回复与再结晶阶段空位与位错的变化及其对性能的影响。
【答案】(1)在低温回复阶段,主要表现为空位的消失。冷变形后所产生的大量空位,通过空位迁移至表面或晶界,空位与间隙原子重新重合,空位与位错发生交互作用,空位聚集成空位片等方式,使得空位数量急剧减少。
(2)在中温回复阶段,温度升高,使位错容易滑移,同一滑移面上的异号位错相遇会相互吸引而抵消,不但使亚晶内部的位错数目减少,而且胞壁缠结位错的减少更为显著,重新调整排列规则,胞壁变得明晰,形成回复亚晶。即该阶段主要表现为位错的滑移,导致位错重新结合,异号位错的汇聚而抵消以及亚晶的长大。
(3)在高温回复阶段,位错运动的动力学条件更为充分,滑移同时也发生攀移,使得多层滑移面上的位错密度趋于相同,各位错之间的作用力使得同一滑移面上的位错分布均匀,间距大体相等,形成规则排列的垂直于滑移面的位错墙,即多边形化的过程。多边形化构成的位错墙即是小角度晶界,它将原晶粒分隔成若干个亚晶粒。
13.试绘出体心立方晶胞示意图,在晶胞中画出体心立方晶体的一个滑移系,标出指数;说明体心立方结构的单相固溶体合金在冷塑性变形中的特点。
【答案】(1)体心立方晶胞示意于图,晶胞中的一个滑移系为
效。
(2)体心立方结构的单相固溶体合金在冷塑性变形表现出的特点为加工硬化、屈服现象和应变时
相关内容
相关标签