2017年江西理工大学凝聚态物理(加试)之量子力学教程复试实战预测五套卷
● 摘要
一、计算题
1. 设质量为m 的粒子处于势场的本征波函数
也属于正幂次级数,故有定态方程
式中:
则I 式可以化为:令
上方程可化简为
式解得
则
中,K 为非零常数. 在动量表象中求与能量E 对应
【答案】显然势场不含时,属于一维定态问题,而
其中C 为归一化常数。
2. 假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场B 沿z 轴正向,电子磁矩在均匀磁场中的势能:
表示;
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:电子轨道运动,
此时T=0。
求t >0时,自旋的平均值。提示:
提示:忽略
这里
为电子的磁矩;
自旋用泡利矩阵
(2)假设t=0时,电子自旋指向x 轴正向,即
(3)求t >0时,电子自旋指向y 轴负向,即【答案】(1)忽略电子轨道运动,是玻尔磁子。所以哈密顿为:
的几率是多少?
其中,
薛定谔方程为:
(2)在
表象中求解,自旋波函数可表示为:
即:
式中,
满足
即
设t= 0时,电子的自旋指向x 轴正向,
对应波函数为
并满足归一关系:可得:
即,可得:
时刻t ,自旋的平均值:
所以:
(3)假设t 时刻,
的几率为P ,则
的几率为
所以:
3. 考虑相距2a 、带电为e 和一e 的两个粒子组成的一个电偶极子,再考虑一个质量为m 、带电为e 的入射粒子,其入射波矢k 垂直于偶极子方向,见图求在玻恩近似下的散射振幅,并确定微分散射截面取最大值的方向。
图
【答案】电偶极子势能为 由波恩近似有散射振幅为散射微分截面为式中
此即所求表达式.
式中,是轨道角动量算符,1是转子的转动惯量。
【积分未完成】
4. 一自由的三维转子的Hamiltonian
为(1)求能谱与相应的简并度; (2)若给此转子施加以微扰已知:
求基态能级移动(直至二阶微扰).
【答案】(1)显然,哈密顿算符与本征值对应, 故三维转子能谱
(2)转子在基态非简并时,故
其中1为轨道角动量量子数,其简并度为21+1 .
相关内容
相关标签