当前位置:问答库>考研试题

2017年福建省培养单位福建物质结构研究所811量子力学考研题库

  摘要

一、填空题

1. 粒子在一维势阱中运动,波函数为

【答案】 2.

表示_____,几率流密度表示为_____。

的跃变条件为_____

。若势阱改为势垒

的跃变条件为_____。

【答案】几率密度;

3. 普朗克的量子假说揭示了微观粒子_____特性,爱因斯坦的光量子假说揭示了光的_____性。 【答案】粒子性;波粒二象性

【解析】普朗克为解释黑体辐射规律而提出量子假说

爱因斯坦后来将此应用到了光电效应

上,并因此获得诺贝尔奖,二人为解释微观粒子的波粒二象性作出了重大贡献,这为量子力学的诞生奠定了基础.

4. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。 【答案】 5.

为氢原子的波函数(不考虑自旋),

的关系是_____。

分别称为_____量子

数、_____量子数、_____量子数,它们的取值范分别为_____、_____、_____。 【答案】主;角;磁;

6. 总散射截面Q 与微分散射截面【答案】

二、简答题

7. 电子在位置和自旋表象下,波函数【答案】

利用

的几率密度;

8. 如果算符

表示粒子在

如何归一化?解释各项的几率意义。

进行归一化,其中

的几率密度。

表示粒子在

|

表示力学量那么当体系处于的本征态时,问该力学量是否有确定的值?

【答案】是,

其确定值就是在本征态的本征值。

9. —个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

10.简述波函数和它所描写的粒子之间的关系。

【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在

用算符的本征函数

展开

态中测量粒子的力学量^

得到结果为

的几率是

得到结果在

范围内的几率

11.写出测不准关系,并简要说明其物理含义。 【答案】测不准关系

物理含义:若两个力学量不对易,则它们不可能同

时有确定的测值。

12.如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为

.

则对任意波函数

完全系为有:

可见,这组算符中的任何一个均和其余的算符对易。

13.什么样的状态是定态,其性质是什么?

【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变

14.将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

依题意

三、证明题

15.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值

表示所属的本征函数,则

因为是厄密算符,于是有

由此得

16.假设A 、B 、C 是三个矩阵,证明【答案】

即是实数。

所以

四、计算题

17.设一维简谐振子的初始(t=0)波函数为

为简谐振子的三个(n=0, 1,2)最低能量的定态波函数. 试求 (1)系数A = ? (2)t 时刻的波函数(3)t 时刻的能量平均值.

【答案】(1)由波函数的正交归一化条件有

其中

(2) —维谐振子能量为故

t 时刻波函数为

(3)

各自对应概率为

7

均与时间无关,故t 时刻粒子能量平均值为

18.考虑一维双势阱:

(1)推导在x=a处波函数的连接条件. (2)对于偶宇称的解,即

求束缚态能量本征值满足的方程,并用图解法说明本

其中