2017年东北师范大学数学与统计学院432统计学[专业硕士]之统计学考研导师圈点必考题汇编
● 摘要
一、简答题
1. 何谓统计分组?统计分组有哪些作用?
【答案】根据统计研宄的目的和客观现象的内在特点,按某个标志(或几个标志)把被研宄的总体划分为若干个不同性质的组,称为统计分组。
统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。
2. 简述时间序列的构成要素。
【答案】时间序列的构成要素分为4种,即趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;
(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
3. 下面两个统计图分别是对某数据集中y 关于x 的线性回归分析后的残差(Residuad )请指出这个回归分析所存在的问题,并提出解诀方案。
【答案】由残差图可知,两个变量之间可能为非线性关系。表明所选择的线性回归分析模型不合理,应该考虑选 用非线性模型。处理非线性回归的基本方法是,通过变量变换,将非线性回归化为线性回归,然后用线性 回归方法处理。假定根据理论或经验,已获得输出变量与输入变量之间的非线性表达式,但表达式的系 数是未知的,要根据输入输出的n 次观察结果来确定系数的值。按最小二乘法原理来求出系数值。
此外,残差连续的出现在横坐标轴的上面或下面,两个变量也可能存在正自相关问题,即线性回归模型扰动 项的方差-协方差矩阵的非主对角线的元素不全为0, 存在扰动项的自相关。可以采用检验,检验方程是否存在一阶自相关问题,或采用
或仍用检验高阶自相关问题。如果存在自相关,可以采用可行广义最小二乘法值。
4. 简述方差分析的基本原理。
【答案】方差分析通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。在方差分析中,数据的误差是用平方和来表示的,总平方和可以分解为组间平方和与组内平方和。组内误差只包含随机误差,而组间误差既包括随机误差,也包括系统误差。如果组间误差中只包含随机误差,而没有系统误差。这时,组间误差与组内误差经过平均后的数值就应该很接近,它们的比值就会接近1; 反之,如果在组间误差中除了包含随机误差外,还会包含系统误差,这时组间误差平均后的数值就会大于组内误差平均后的数值,它们之间的比值就会大于1。当这个比值大到某种程度时,就可以说因素的不同水平之间存在着显著差异,也就是自变量对因变量有影响。
5. 统计分组标志选择的原则。
【答案】在进行统计分组标志选择时要遵循三个原则:
(1)应根据研宄目的与任务选择分组标志。同一研宄总体,研宄的目的不同,可选用的分组标志也不同。
(2)要选用能反映事物本质或主要特征的标志。一般情况下,社会经济现象有多种特征,在选择分组标志 时,可以使用这种标志,也可以选择另一种标志,这就需要根据被研究对象的特征,选择主要的、能抓住事物本 质的标志进行分组。
(3)要根据现象所处的历史条件及经济条件来选择标志。由于社会是不断发展的,在不同的历史条件与经 济条件下,选择的分组标志也不一样,要根据情况的变化而变化。
6. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为
为当总体方差已知时,总体均值的检验统计量为:
当总体方差
为:
法,但使用方差-协方差矩阵的稳健估计!还是小样本此外还需要区分总体是否服从正态分布、总体方差是否已知等几种总体方差
未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差 已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差未知时,需要用样本方差代替总体方差样本均值的抽样分布服从自由度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
7. 解释总体分布、样本分布和抽样分布的含义。
【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。
样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。
一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。
8. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检
; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即