2016年中国矿业大学(徐州)矿业工程学院862运输运筹学考研必备复习题库及答案
● 摘要
一、填空题
1. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。 【答案】
2. 若对偶问题为无界解,则原问题:_____。
【答案】无可行解
【解析】任一对偶问题的可行解都是原问题的上界,而原问题的任意可行解都是对偶问题的下界。若对偶问题为无界解,则原问题的目标函数
有可行解。
3. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。 【答案】,对于一切有。
【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,此时令非基变
量
, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应
于基B 的基可行解
为。由最优解的判别定理,若对于一
切
, 则所求得的基可 行解为最优解。
4. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案是否会发生变化: _____。
【答案】不发生变化
【解析】如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案中各变量的 检验数均不发生变化,所以最优调运方案不发生变化。 无界,即无限小,则z 无解,即没
二、简答题
5. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。
(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。
(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。
【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最
优行车路线。求解过程框图如图所示。
图
(2)修改后的迭代算法即神经网络(neural networks)算法。
①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为N ; i 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。
②将车辆调度的各种约束条件转化为约束能量函数为E 约。
,且r i (t )只能取0或1,令神经元i 的阈值为③神经网络计算:令时刻t 神经元i 的输出为r i (t )
Q i ,则输出能量
为
,其中,因此总的能量函数
为,则该网络相对处于稳定状态。由于如果,且E 有界,系统必
趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。
④根据所形成的最满意线路来选择车辆调度方案。
(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收
相关内容
相关标签