2018年辽宁中医药大学第一临床学院306西医综合之生物化学考研核心题库
● 摘要
一、名词解释
1. 胞吐(作用)。
【答案】胞吐是指分泌的物质被包裹在脂囊泡内,与质膜融合,然后将物质释放到细胞外空间的过程。
2. 小分子核仁RNA (small nucleolar RNA,snoRNA )。
【答案】小分子核仁RNA 是指真核生物细胞核核仁内的小分子RNA , 与蛋白质构成复合物snoRNP , 其中的一部分参与rRNA 前体核苷酸修饰位点的确定。
3. RNA interference (RNA 干扰)。
【答案】RNAinterferenceCRNA 干扰)即RNAi ,是指与靶基因同源的双链RNA 诱导的特异性转录后基因表达 沉默的现象,其作用机制是双链RNA 降解产生的小干扰RNA (siRNA )与同源的靶mRNA 互补结合,导致mRNA 降解而抑制基因表达。RNAi 技术广泛用于基因功能研宄和重大疾病的基因治疗。
4. 类脂。
【答案】类脂是指除脂肪以外的其他脂类,包括磷脂类、固醇类等。
5. 异头碳。
【答案】异头碳是指环化单糖的氧化数最高的碳原子。异头碳具有羰基的化学反应性。
6. 单纯蛋白质(simpleprotein )。
【答案】单纯蛋白质是指只由氨基酸组成,不含氨基酸以外的其他化学成分的蛋白质分子,例如:核糖核酸酶、肌动蛋白等。
7. 别构酶
【答案】别构酶是指含有别构中心的酶。别构中心在结合别构效应物以后构象发生变化,从而影响到活性中心的构象,最后改变酶的活性。
8. 酮症(ketosis )。
【答案】脂肪酸在肝脏可分解并生成酮体,但肝细胞中缺乏利用酮体的酶,只能将酮体经血循环运至肝外组织利用。酮症是指在糖尿病等病理情况下,体内大量动用脂肪,酮体的生成量超过肝外组织利用量时所引起的疾病。此时血中酮体升高,并可出现酮尿。
二、问答题
9. 预测下列突变对胆固醇代谢和脂代谢会带来什么影响。
(1)肉碱-软脂酰转移酶I 对丙二酸单酰CoA 不再敏感。
(2)将HMG-CoA 还原酶上磷酸化的位点(一个特殊的Ser 残基)替换成Ala 。
(3)过量表达固醇调节元件结合蛋白(SREBP )上的碱性螺旋-环-螺旋
结构域(无跨膜螺旋)。
(4)肝细胞组成型表达LDL 受体。
(5)使柠檬酸不能与乙酰CoA 羧化酶结合。
【答案】(1)肉碱软脂酰转移酶Ⅰ控制脂肪酸进入线粒体,其活性受到丙二酸单酰CoA 的抑制,这种突变将使得长链脂肪酸的β-氧化不再受到调控,将在任何条件下都能进行。
(2)AMPK 活性直接受细胞能量状态的控制,高水平的AMP 可直接激活AMPK 。AMPK 的底物包括HMG-CoA 还原酶。在AMPK 的催化下,HMG-CoA 还原酶磷酸化而丧失活性。如果它的磷酸化位点变成Ala ,则不能再被磷酸化修饰,于是,胆固醇的合成即使在能量极端贫乏的条件下仍然能够进行。
(3)此结构域激活参与胆固醇合成的酶的基因表达,然而正常的情况下它受到跨膜螺旋的限制而定位在膜上,只有在胆固醇水平较低的情况下,才会与跨膜螺旋分离,进入细胞核,激活特定的基因表达。如果过量表达无跨膜螺旋限制的bHLH , 将会导致上述参与胆固醇合成的酶基因的持续表达。
(4)这将使肝细胞在各种条件下吸收存在于LDL 和IDL 中的胆固醇,有利于降低血液中的胆固醇,但也可能导致肝外组织得不到需要的胆固醇。
(5)柠檬酸激活受AMPK 磷酸化的乙酰CoA 羧化酶。如果乙酰CoA 羧化酶不能与柠檬酸结合,则磷酸化的乙酰CoA 羧化酶对于过量的柠檬酸不再有反应。然而,在某些激素的作用下,它可以发生去磷酸化,于是,脂肪酸仍然能够合成(至少在某些条件下)。
10.线粒体在真核生物的电子传递和氧化磷酸化中的作用是什么?
【答案】真核生物的电子传递和氧化磷酸化主要是在线粒体上进行的。在呼吸链中,酶和辅酶按一定的顺序排列在线粒体内膜上,其中传递氢的称为递氢体,传递电子的称为递电子体。呼
I
吸链由线粒体内膜上的五种复合体(复合蛋白)组成,它们是复合体(
氧化酶,辅基为素a 、血红素和
传递电子的有
和IV 推动和)、复合体II (琥珀酸-Q 还原酶,辅基为合酶)。辅基传递氢和电子的有通过得失电子来传递电子。电子传递使复合体I 、III 跨膜流动的结离子浓度低于间隙的。线粒体基质形成负电势,而间隙形成正电
还原酶,又称和)、复合体(细胞色素还原酶,辅基为血红素b 、血红素
和)、复合体V (和血红素
,)、复合体IV (细胞色素氧化酶,辅基为血红跨过线粒体内膜到线粒体的间隙。线粒体间隙与细胞溶胶相接触。果造成线粒体内膜内部基质的
势,这样产生的电化学梯度即电动势,称为质子动势或质子动力势。其中蕴藏着自由能即是ATP
合成的动力。伴随电子从底物到氧的传递,被磷酸化形成
11.螺旋的稳定性不仅取决于肽链内部的氢键,而且还与氨基酸侧链的性质有关。室温下,在溶液中下列多聚氨基酸哪些能形成螺旋?哪些能形成其他有规则的结构?哪些能形成无规则的结构?并说明其理由。
(1)多聚亮氨酸
(2)多聚异亮氨酸
(3)多聚精氨酸
(4)多聚精氨酸
(5)多聚谷氨酸
(6)多聚苏氨酸
(7)多聚羟脯氨酸
【答案】(1)多聚亮氨酸的R 基团不带电荷,适合于形成螺旋。
(2)异亮氨酸的碳位上有分支,所以形成无规则结构。
(3)在
(4)在
(5)在时,所有精氨酸的R 基团都带正电荷,正电荷彼此相斥,使氢键不能形成,所时,精氨酸的R 基团不带电荷,并且碳位上没有分支,所以形成螺旋。 时,谷氨酸的R 基团不带电荷,并且碳位上没有分支,所以形成螺旋。 以形成无规则结构。 (6)因为苏氨酸(3碳位上有分支,所以不能形成螺旋。
(7)脯氨酸和羟脯氨酸折叠成脯氨酸螺旋,这脯氨酸螺旋是不同于螺旋的有规则结构。
12.溶液A 中含有浓度为lmol/L的20个碱基对的DNA 分子,溶液B 中含有0.05mol/L的400个碱基对的DNA 分子,所以每种溶液含有的总的核苷酸残基数相等。假设DNA 分子都有相同的碱基组成。
(1)当两种溶液的温度都缓慢上升时,哪个溶液首先得到完全变性的DNA?
(2)哪个溶液复性的速度更快些?
【答案】(1)溶液A 中的DNA 将首先被完全变性,因为在20个碱基对螺旋中的堆积作用力比在400个碱基对螺旋中的力小很多,在DNA 双链的末端的DNA 的碱基对只是部分堆积。在片段短的分子中这种“末端效应”
更大。
(2)在溶液A 中复性的速率更大。成核作用(第一个碱基对的形成)是一个限速步骤,单链分子的数目越大,重新形成碱基对的概率就越大,因而在溶液A 中的DNA (含有2mol/L单链DNA )将比溶液B 中的DNA (含有0.1mol/L单链DNA )更快地复性。
相关内容
相关标签