2018年浙江大学农业与生物技术学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1. 设三阶方阵A 、B
满足式
的值.
其中E 为三阶单位矩阵.
若
求行列
【答案】
由矩阵
知则
. 可
逆.
又
故
即
所以
即
而
故
2.
已知
其中E
是四阶单位矩阵
是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
专注考研专业课13年,提供海量考研优质文档!
所以有
3.
设
当a , b 为何值时,存在矩阵C 使得AC-CA=B,
并求所有矩阵C.
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设
则AC-CA=B
可变形为
即得到线性方程组
若要使
C 存在
,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时,
所以方程组的通解为
也就是满足AC-C4=B的矩阵C 为
其中
为任意常数.
专注考研专业课13年,提供海量考研优质文档!
4.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。
二、计算题
5. 计算下列各行列式:
(1
)
(2
)
(3
)
(4
)
【答案】⑴