2017年广西师范大学物理科学与技术学院824量子力学考研题库
● 摘要
一、简答题
1. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
2. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
3. —个量子体系处于定态的条件是什么?
【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。
4. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符
5. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
第 2 页,共 40 页
定义电子的自旋算符,并验证它们
其中,
6. 放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?
【答案】与量子隧穿效应有关。
7. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
8. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.
叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.
9.
写出角动量的三个分量【答案】这三个算符的对易关系为
10.试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
的对易关系.
为粒子可能处于的态,那么这些态的任意线性组合
二、计算题
11.—自旋中的矩阵为
(1)不考虑空间运动,由求任意时刻f 的波函数
的粒子的哈密顿算符
为实常数。
确定自旋运动定态能量. 与定态波函数并求
和
的几率。 时波函数为
其中
及能量£
、动量
已知
时,
其中,
,
在表象
(2)同时考虑空间运动和自旋运动,已知
是的本征值
与自旋的平均值:【答案】(1
)
的本征函数,求任意时刻的波函数
本征方程
为若
设
第 3 页,共 40 页
即需解
方程有非零解,则必有
可得:
因此:
任意时刻,因为
时刻,
且:
故:
的几率为:
的几率为:(2)容易证明,
时刻,粒子的空间波函数为
的本征态,对应本征值为
故:
12.自旋为时,粒子处于(2)求出t >0时
固有磁矩为
的状态。
的可测值及相应的取值几率。
第 4 页,共 40 页
因此:
(其中为实常数)的粒子,处于均匀外磁场中,设t=0
(1)求出t >0时的波函数; 【答案】(1)体系的哈密顿算符为