当前位置:问答库>考研试题

2017年山西师范大学物理与信息工程学院620量子力学考研导师圈点必考题汇编

  摘要

一、简答题

1. 自旋可以在坐标表象中表示吗?

【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

2. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

3. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。 【答案】不同意。因为

4. 已知为一个算符么正算符?

【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。

5. 扼要说明:

(1)束缚定态的主要性质。

(2)单价原子自发能级跃迁过程的选择定则及其理论根据。

【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:

为实函数,但

满足如下的两式

可以为复函数。 问何为厄密算符?何为

理论根据:电矩m 矩阵元

6. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?

【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。

7. 解释量子力学中的“简并”和“简并度”。

【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。

8. 如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为

.

则对任意波函数

完全系为有:

可见,这组算符中的任何一个均和其余的算符对易。

9. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

依题意

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

10.能级的简并度指的是什么?

【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。

二、证明题

11.试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

12.处于某种量子环境下的电子的哈密顿量具有如下形式:

其中,m 是电子质量,【答案】体系哈密顿量:

为电子动量算符,算符定义为且和B 都

为实常数,证明电子角动量算符的分量为该体系的守恒量。

其中,显然有设:

于是有:

其中:

同理,有:

因此,有:

利用类似的方法,可得:

因此,有:

综上所述,可以得到

也即

故为体系守恒量,得证。

三、计算题

13.考虑一自旋量于救s=l的粒子,忽略空间自由度,并假定粒子处在外磁场的单位矢量),粒子的哈米顿算符为(1)若虬

同本征矢

(2)如果初始时刻t=0粒子的态为

求在t >0后粒子的态?

中(为x 轴

为基,求自旋算符S 的矩阵表示.