2017年新疆维吾尔自治区培养单位新疆理化技术研究所811量子力学考研冲刺密押题
● 摘要
一、简答题
1. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
2. 描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
3. 波函数
问
是否
是否描述同一状态?
【答案】
与描写的相对概率分布完全相同,描写的是同一状态。
4. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
5. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数
则在
用算符的本征函数
展开
态中测量粒子的力学量^得到结果为
的几率是
得到结果在
范围内的几率
为
6. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
第 2 页,共 41 页
7. 写出在【答案】
表象中的泡利矩阵。
满足如下的两式
问何为厄密算符?何为
8. 已知为一个算符么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
9. 完全描述电子运动的旋量波函数为
分别表示什么样的物理意义。
【答案
】
表示电子自旋向
下
表示电子自旋向上
的几率。
位置
在
处的几率密度
;
试述
及
10.试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.
叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.
为粒子可能处于的态,那么这些态的任意线性组合
二、证明题
11.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值
由此得
12.假设A 、B 、C 是三个矩阵,证明【答案】
表示所属的本征函数,则
即是实数。
所以
因为是厄密算符,于是有
三、计算题
13.设质量为m 的粒子处于势场的本征波函数
也属于正幂次级数,故有定态方程
式中:
则I 式可以化为:
第 3 页,共 41 页
中,K 为非零常数. 在动量表象中求与能量E 对应
【答案】显然势场不含时,属于一维定态问题,而
令上方程可化简为
式解得
则
其中C 为归一化常数。
中(为x 轴
14.考虑一自旋量于救s=l的粒子,忽略空间自由度,并假定粒子处在外磁场的单位矢量),粒子的哈米顿算符为(1)若虬
同本征矢
(2)如果初始时刻t=0粒子的态为(3)发现粒子处在【答案】(1)由于
求在t >0后粒子的态?
为基,求自旋算符S 的矩阵表示.
态的概率是多少?
故
由于哈密顿量为(2)由定态方程
则能量本征态对应于
解得
本征态.
而故t >0后粒子的态为
(3)由于
故所求概率为
第 4 页,共 41 页
相关内容
相关标签