当前位置:问答库>考研试题

2017年山东师范大学物理与电子科学学院822量子力学考研题库

  摘要

一、简答题

1. 放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?

【答案】与量子隧穿效应有关。

2. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。

(3)电子自旋磁矩需引入2倍关系。

3. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?

【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的

每条光谱线都分裂为

条(偶数)的现象称为正常塞曼效应。原子置于外

电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。

4. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。

【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。

5. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

6. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符

得出。表示力学量的算符组成完全系的本征函

数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

7. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数

已知:另一部分

很小,可以看作是加于

它的本征值

上的微扰. 写出在非简并

状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】

一级修正波函数为二级近似能量为

其中

8. 写出电子自旋的二本征值和对应的本征态。 【答案】

9. 归一化波函数是否可以含有任意相因子【答案】可以。因为即用任意相因子

如果

对整个空间积分也等于1。

对整个空间积分等于1,则

去乘以波函数,既不影响体系的量子状态,也不影响波函数的

归一化。

10.以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量

用算符表示,

当体系处于某个能量态

的作用是得到这一本征值,即

当体系处于一般态

的本征态

时,算符对

的作

时,算符对态

,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)

二、证明题

11.粒子自旋处于的本征态

试证明的不确定关系

【答案】易知但是

,(常数)

所以有:

同理,可得因此:

12.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

具有周期性,

所以

即本征值为实

【答案】(1)证:对于厄米算符

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即角动量z 分量的本征值为

是量子化的,相应本征函