当前位置:问答库>考研试题

2018年武汉大学数学与统计学院432统计学[专业学位]考研基础五套测试题

  摘要

一、判断题

1. 点估计是用样本的统计量直接估计和代表总体参数。( ) 【答案】

2. 残差平方和是解释变量变动所引起的被解释变量的变差。( )

【答案】×

【解析】残差平方和是随机因素影响所引起的被解释变量的变差;回归平方和是指被解释变量的总体平方和与残差平方和之差。

3. 在多兀线性回归中检验和检验是等价的。( )

【答案】×

【解析】F 检验是关于回归方程是否显著的检验检验是关于回归系数的检验。在一元线性回归中,t 检验与F 检验是等价的,但是在多兀线性回归中检验与F 检验是没有关系的。

4. 估计量和估计值并没有什么区别,二者是同一概念。( )

【答案】×

【解析】“估计值”是参数估计量的一个具体数值,而当把估计结果看成是一个表达式时,那么“估计量”就是一个随机变量。

5. 设A 、B 为两事件,并且【答案】×

【解析】若A 与B 相互独立,

故 若A 与S 相容,

则则( )

6. f 分布与正态分布的区别是前者的分布形态是不对称的,后者是对称的。( )

【答案】×

【解析】f 分布和正态分布都是对称分布,在样本容量n 较小时,两者分布区别较大,当n 足够大时,f 分布近似于正态分布。

7. 对于一元线性回归模型,如果自变量是显著的,那么自变量所对应的系数应该显著的不为0。( )

【答案】×

8. 若在实际应用中所处理的变量并不是严格的连续型变量,则不能使用正态分布。( )

【答案】×

【解析】在实际应用中,如果所处理的变量并不是严格的连续型变量,可以通过连续校正,然后再使用正态分布。

二、简答题

9. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?

【答案】不是。

显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。

当两个事件相互独立时,

当两个事件不相互独立时

,⑴ ⑵

记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左

撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。

10.简述均值、众数和中位数三者之间的关系及其在实际中的应用。

【答案】(1)众数、中位数和平均数的关系

从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。

对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:

①如果数据的分布是对称的,众数中位数和平均数必定相等,即

②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:

③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,

(2)众数、中位数和平均数在实际中的应用

①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。

②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。

③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。

11.何谓统计量?分布、t 分布、F 分布是不是统计量?它们在统计分析中各有何用处?

【答案】设是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数

又称出不依赖于任何未知参数,则称函数为样本统计量。当获得样本的一组具体观测值的数值,就获得一个具体的统计量值。

从以上统计量的定义可以看出,当.

赖于任何未知参数时,则.

未知参数,则它们就不是统计量。

分布:分布可以用来构造f 分布与F 分布,并且在假设检验与列联分析中做检验统计量。

t 分布:一般当时,f 分布与标准正态分布就非常接近。分布的诞生对于统计学中小样本理论和应用有着重要的促进作用。f 分布在假设检验与线性回归显著性检验中做检验统计量。

F 分布:在比较两个总体方差的假设检验时通常用F 分布,且F 分布在线性回归显著性检验与方差分析中做很重要的检验统计量。

12.什么叫变异、变量和变量值,试举例说明。

【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

13.简述判定系数的含义和作用。

【答案】(1)判定系数的含义

回归平方和占总平方和的比例称为判定系数,记为

是一个统计量。通常,时,代入T ,计算分布、t 分布、F 分布是由样本构造的函数,而且不依分布、t 分布、F 分布中含有分布、t 分布、F 分布就是统计量;若其计算公式为: