2018年徐州医科大学临床学院306临床医学综合能力(西医)[专业硕士]之生物化学考研强化五套模拟题
● 摘要
一、名词解释
1. 一碳单位。
【答案】一碳单位是指在某些氨基酸分解代谢过程中产生的仅含有一个碳原子的基团如甲基、亚甲基、羟甲基等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸和组氨酸等的分解代谢,一碳单位参与各种生物活性物质的修饰,参与嘌呤嘧啶的合成等。
2. 肽键(peptidebond )。
【答案】肽键是由一个氨基酸的氨基与另一个氨基酸的羧基失水缩合而形成的酰胺键,是肽和蛋白质一级结构的基本化学键。
3. 反意义链。
【答案】反意义链又称模板链,是指可作为模板转录为RNA 的那条链,该链与转录的RNA 碱基互补(A-U ,G-C )。
4. 退火(annealing )。
【答案】退火是指DNA 由单链复性变成双链结构的过程。来源相同的DNA 单链经退火后完全恢复双链结构,不同来源DNA 之间或DNA 和RNA 之间,退火后形成杂交分子。
5. 拮抗剂(antagonist )。
【答案】拮抗剂是指能与特定激素的受体结合,但并不能诱发靶细胞产生生物学效应的分子。
6. 表达载体(expression vector)。
【答案】表达载体是指为使插入的外源DNA 序列可转录,进而翻译成多肽链而特意设计的克隆载体。
7. (年)内含子
【答案】内含子 是指在转录后的加工中,从最初的转录产物中除去的内部的核苷酸序列。内含子也指编码相应外显子的中的区域。
8. 疏水作用(hydrophobic interaction)。
【答案】疏水作用是疏水基团或疏水侧链出自避开水的需要而被迫接近,并非疏水基团之间有什么吸引力。疏水作用使水介质中球状蛋白质折叠总是倾向把疏水残基埋藏在分子的内部,它
对稳定蛋白质三维结构有突出重要的作用。
二、问答题
9. 简述Cech 及Altman 是如何发现具有催化活性的RNA 的。
【答案】1982年,美国的T.Cech 发现原生动物四膜虫的26SrRNA 前体能够在完全没有蛋白质的情况下,自我加工、拼接,得到成熟的rRNA 。
1983年,SAtman 和Pace 实验室研宄RNaseP 时发现,将RNaseP 的蛋白质与RNA 分离,分别测定,发现蛋白质部分没有催化活性,而RNA 部分具有与全酶相同的催化活性。
1986年,T.Cech 发现在一定条件下,L19RNA 可以催化PolyC 的切割与连接。
10.为什么tRNA 上会存在大量的修饰型的核苷酸?其生物学意义又是什么?
【答案】tRNA 上存在的大量修饰型核苷酸是
生物学意义是:
(1)不易被降解而增强
(2)是氨酰
(3)促进的稳定性; 的特征结构,即作为“第二密码”的结构基础; 合成酶识别底物转录后加工的产物。这些修饰型核苷酸的三级结构形成,是倒“L ”形精细部位结构差异的重要原因,对于保持
的特异性很必要。
11.如果某一研宄人员声称利用PCR 技术获得了纯的恐龙DNA , 你将如何判断其真实性?
【答案】因为PCR 技术的最大特点是可以将少到1个分子的DNA 放大(扩增),声称获得恐龙DNA 会使人怀疑其真实性。需要对得到的DNA 测序,看看DNA 序列是否与人、细菌或真菌类似,如果类似,放大的DNA 可能是来自污染。如果测序结果与鸟类或鳄鱼类似,得到的DNA 有可能是恐龙DNA ,因为这些动物进化与恐龙亲缘关系近。
12.原核生物和真核生物识别起始密码子的机制有什么不同?
【答案】原核生物和真核生物识别起始密码子的机制的不同点如下:
(1)原核生物依靠端的SD 序列与核糖体小亚基中端的反SD 序列之间
瑞的帽子结构,然后沿的相互作用,识别SD 序列下游的AUG 作为起始密码子。 (2)真核生物依靠帽子结合蛋白复合物和核糖体小亚基识别
着mRNA 向下 游移动,一般以扫描过程中遇到的第一个AUG 为起始密码子。如果该AUG 所处环境不合适(与一致序列差别 较大),不能被有效识别,则发生遗漏扫描,越过第一个AUG , 继续寻找下游处于更好环境中的AUG 作为起始 密码子。在扫描过程中核糖体可以解开稳定性较小的mRNA 二级结构,但是遇到稳定性高的强二级结构时,则 可能越过包括二级结构和AUG 在内的一段序列,在下游寻找合适的起始密码子。对于少数缺少帽子结构的 mRNA , 核糖体可以直接与mRNA 内部的内在的核糖体进入位点(internal ribosome entry site,IRES )结合。
13.(1)柠檬酸是影响细胞内某些代谢途径的重要信号分子。当肝脏细胞内的柠檬酸水平升高时,它能调节 糖的分解代谢和脂肪酸的生物合成。请你解释柠檬酸水平的升高是怎样调节这些代谢反
14应,进而影响糖转变成脂 肪酸的合成?(2)葡萄糖能为脂肪酸的合成提供碳原子。C 标记葡
萄糖什么部位的碳才能使新合成的软脂酸的 碳原子全都含有放射性标记?(回答问题时只考虑柠檬酸合成后立即被转运到胞液中这种情况。)
【答案】(1)当肝脏细胞内的柠檬酸水平升高时,表明细胞含有较高的能量水平(同时表明NADH 的水平也是 高的)将糖以三酰甘油的形式储存。于是柠檬酸以及ATP 即可作为糖酵解途径憐酸果糖激酶的别构抑制剂,抑制该酶的活性,
导致葡萄糖
以及甘油醛磷酸进入磷酸戊糖途径,
产生磷酸,后者进入糖酵解生成丙酮酸,丙酮酸进入线粒体氧化生成乙酰CoA ,
后者可用于脂肪酸的合成,进而为脂肪的合成做好准备。柠檬酸是乙酰CoA 羧化酶的激活剂,有利于脂肪酸的合成;同时,柠檬酸也是乙酰基的载体,将乙酰CoA 跨膜转 运到胞液,用于脂酸的合成。甘油醛
反应。
(2)标记葡萄糖的Cl 、C2以及C6和C5部位即可使新合成的软脂酸的碳原子全都含有放射性标记。
14.McArdle 病由肌肉中糖原磷酸化酶缺陷导致,Her 病由肝中糖原磷酸化酶缺陷导致。尽管这两种酶在不同组织中催化同样的反应,但Her 病有可能导致生命危险,而McArdle 病只会在运动时产生问题。请写出糖原磷酸化酶催化的反应,并解释这两种病在严重性上的差别。
【答案】糖原磷酸化酶催化的反应是:(糖原)+Pi-(糖原)H+G-1〜P
由于G-1-P 在肝细胞中变构成G-6-P 后即可由其磷酸酶水解为葡萄糖并输出,因此肝糖原的降解对于保持血糖水平的稳定非常重要。糖原磷酸化酶一旦发生缺陷,肝糖原将不能有效降解而影响血糖水平的正常调节,严重时可能导致生命危险。
反之,肌细胞中没有G-6-P 磷酸酶,因而肌糖原的降解对于维持血糖稳定几乎没有作用,其生理意义主要是为剧烈运动的肌肉提供能源物质。糖原磷酸化酶缺陷只导致肌肉组织供能不足而不会对人体造成严重影响。
15.某些细菌能够生存在极高的pH 环境下(pH 约为10),你认为这些细菌能够使用跨膜的质子梯度产生ATP 吗?
【答案】这样的细菌不能够使用跨膜的质子梯度产生ATP , 这是因为如果要求它们与一般的细菌一样使用质子梯度产生ATP , 则需要其细胞质具有更高的pH , 在这种情况下细胞是不能生存的。当然,这些细菌可使用其他的离子梯度,比如钠离子梯度驱动ATP 的合成。
16.给大白鼠注射二硝基酿可引起体温升高,试解释原因。
【答案】2,4-
二硝基苯酚(
透性升高,影响了)对电子传递链无抑制作用,
但可使线粒体内膜对的通的进行,使产能过程与能量的贮存脱离,刺激线粒体对氧的需要,
磷酸氧化产生的NADH 和磷酸戊糖途径产生NADPH 都可用脂酸合成的 还原
相关内容
相关标签