当前位置:问答库>考研试题

2017年南京理工大学理学院843量子力学之量子力学教程考研仿真模拟题

  摘要

一、简答题

1. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

2. —个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

3.

写出角动量的三个分量【答案】这三个算符的对易关系为

4. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。

【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。

5. 波函数么?

【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。表示在时刻附近体积元中粒子出现的几率密度。

6. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

7. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间

的对易关系.

是用来描述什么的?它应该满足什么样的自然条件?的物理含义是什

各点出现概率只决定于波函 数在空间各点的相对强度。

8. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:

9. 已知为一个算符么正算符?

【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。

10.什么是定态?若系统的波函数的形式为处于定态?

【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.

是否

满足如下的两式

问何为厄密算符?何为

二、证明题

11.设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为

【答案】设在

证明这一点。

表象中,这自旋态的表示为:

则由自旋x 分量和; y 分量算符的表本为:

根据题给条件,有:

由此得:即:

要么自旋朝下

即都为自旋分量的本征态。在

这就意味着,此态要么是自旋朝上

这两个本征态中,

测量自旋分量的平无值分别为

12.证明么正变换不改变算符的本征值。

【答案】设在某一表象下,一个幺正变换的矩阵表示为S 。对任意算符,其在该表象下的矩阵

表示为F , 则对其进行么正变换后的矩阵表示为:

由于相似变换不改变矩阵本征值,故

与F 本征值相同,因此么正变换不改变算符本征值。

三、计算题

13.在表象中,电子波函数可表示为【答案】式中,波函数

代表

(自旋向上)的状态波函数,

代表

简要说明其物理意义。 (自旋向下)的状态

代表自旋向上的概率

代表自旋向下的概率,归一化表示为

14.粒子在二维无限深势阱中运动

,(1)写出本征能量和本征波函数; (2)若粒子受到微扰

的作用,求基态和第一激发态能级的一级修正。

【答案】 (1)根据题意,易写出粒子在二维无限深势阱中本征能量和波函数。

(2)基态的一级能量修正

在计算第一激发态能级的一级修正时,由于存在两组简并态利用简并下能级的修正方法计算. 令

则可计算出微扰

所以微扰可表示成

的矩阵表达式

所以