2018年湖北大学物理学与电子技术学院612量子力学考研强化五套模拟题
● 摘要
一、简答题
1. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
2. 写出泡利矩阵。 【答案】
3.
写出角动量的三个分量【答案】这三个算符的对易关系为
4. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
5. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
6. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
7. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
8. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波
第 2 页,共 50 页
的对易关系.
函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在为
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
二、证明题
9. 设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为
【答案】设在
或
证明这一点。
表象中,这自旋态的表示为:
则由自旋x 分量和; y 分量算符的表本为:
根据题给条件,有:
由此得:即:
或
要么自旋朝下
即都为自旋分量的本征态。在
这就意味着,此态要么是自旋朝上
这两个本征态中,
测量自旋分量的平无值分别为
和
10.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符
证明它是厄米算符,并且求解其本征方程.
因为存在
所以
即正交
即本征值为实
【答案】(1)证:对于厄米算符
数
(2)证:因为而(3)因为
所以
具有周期性,
第 3 页,共 50 页
而
所以
设本征方程为
其中为本征值,上式可改写为
易解出
C 为积分常数,可由归一化条
即为厄米算符。
件决定. 又因为波函数满足周期性边界条件的限制,
由此可得数记为
即为其本征函数. 相应的本征方程为
即角动量z 分量的本征值为
是量子化的,相应本征函
再利用归一化条件可得
三、计算题
11.设无外势场时,质量为能量为E >0的粒子的状态用球面波描写. 试 (1)导出决定S 波(1=0)波函数的常微分方程; (2)求出所有S 波的球面波波函数;
(3)计算对应于S 波解的速度流矢量并作出图示.[南京大学2009研] 【答案】(1)无外势场可看做有心势场的特殊情况. 则粒子在球坐标系中薛定谔方程为
在s 波情况下,令则(2)
故对应波函数为
第 4 页,共 50 页