当前位置:问答库>考研试题

2017年西安交通大学电子与信息工程学院804材料科学基础考研导师圈点必考题汇编

  摘要

一、名词解释

1. 中间相

【答案】中间相是指合金中组元之间形成的、与纯组元结构不同的相。在相图的中间区域。

2. 热塑性和热固性高分子材料

【答案】高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料等。高分子材料按其性能可分为热塑性和热固性高分子材料,其中,热塑性高分子材料可溶、可熔;热固性高分子材料不溶、不熔。利用加热和溶解的方法可将热固性和热塑性材料分辨出来,常用的识别高分子材料的简便方法有经验法、燃烧法、溶解法、仪器分析法等。

3. 相图

【答案】金属及其他工程材料的性能决定于其内部的组织、结构,金属等材料的组织又由基本的相所组成。由一个相所组成的组织叫单相组织,两个或两个以上的相组成的叫两相或多相组织。相图就是用来表示材料相的状态和温度及成分关系的综合图形,其所表示的相的状态是平衡状态。

4. 科垂尔气团(CottrellAtmosphere )

【答案】科垂尔气团是溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果。

5. 再结晶退火

【答案】再结晶退火是指经过塑性变形的金属,在重新加热过程中,当温度高于再结晶温度后,形成低缺陷密度的新晶粒,使其强度等性能恢复到变形前的水平,但其相结构不变的过程。

二、简答题

6. 固相烧结与液相烧结之间有何相同与不同之处?

【答案】(1)固相烧结与液相烧结之间的相同之处:

①烧结的推动力都是表面能;

②烧结过程都是由颗粒重排、气孔填充和晶粒生长等阶段组成。

(2)不同之处:

①由于流动传质速率比扩散速率快,因而液相烧结致密化速率高,烧结温度较低。

②液相烧结过程的速率还与液相数量、性质(粘度、表面张力等)、液相与固相的润湿情况、固相在液相中的溶解度等因素有关。

③影响液相烧结的因素比固相烧结更为复杂。

7. 高分子材料按受热的表现可分为热塑性和热固性两大类,试从高分子链结构角度加以解释。

【答案】热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成形;热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦定型后不能再改变形状,无法再生。

8. (1)写出固体热导率的定义和公式。

(2)指出传导热流的元激发。

(3)指出在低温和高温下热导率对温度的依赖关系,并描述在这两个区间内的主要物理过程。

【答案】(1)固体热导率的定义为:单位温度梯度所引起的热量流密度,即

式中的系数k ,在非金属固体热导率的表示式为

式中,c 为固体热容;为声子的平均速度;1为声子的平均自由程。

(由声子贡献)及电子热导率

式中,

以典型值代入后得 (由自由电子贡(2)传导热流的元激发为声子。 (3)对于金属,

其热导率通常由晶格热导率

献)两部分所组成,即

因此,典型金属的热导率主要由自由电子贡献,即

式中,le 为电子平均自由程,依赖于电子-声子散射过程。所以

式中,为温度为T 时的平均声子数。

是杂质密度)与t 无关,所以 在高温区:在低温区:在极低温区:声子数很少,主要是杂质散射,

9. 指出合金强化的四种主要机制,解释强化原因。

【答案】(1)合金强化的四种主要机制为固溶强化、沉淀强化和弥散强化、晶界强化、有序强化。

(2)强化原因

①固溶强化

固溶在点阵间隙或结点上的合金元素原子由于其尺寸不同于基体原子,故产生一定的应力场,阻碍位错运动;柯氏气团和铃木气团,前者是间隙原子优先分布于BCC 金属刃型位错的拉应力区,对位错产生钉扎作用,后者是合金元素优先分布于FCC 金属扩展位错的层错区,降低层错能,扩大层错区,使扩展位错滑移更加困难。

②沉淀强化和弥散强化

合金通过相变过程得到的合金元素与基体元素的化合物和机械混掺于基体材料中的硬质颗粒都会引起合金强化,分别称之为沉淀强化和弥散强化。沉淀强化和弥散强化的效果远大于固溶强化。位错在运动过程中遇到第二相时,需要切过(沉淀强化的小尺寸颗粒和弥散强化的颗粒)或者绕过(沉淀强化的大尺寸颗粒)第二相,因而第二相(沉淀相和弥散相)阻碍了位错运动。 ③晶界强化

按照Hall-Petch 公式,

屈服点

④有序强化

有序合金中的位错是超位错,要使金属发生塑性变形就需要使超位错的两个分位错同时运动,因而需要更大的外应力。异类元素原子间的结合力大于同类元素原子间的结合力,所以异类原子的有序排列赋予有序合金较高的强度。

10.简述聚合物晶体形态和金属晶体形态的异同。

【答案】聚合物的晶体以各种形式存在,如单晶、球晶、串晶、柱晶和伸直链晶等。

(1)单晶。凡是能够结晶的聚合物,在适当的条件下都可以形成单晶。单晶只能从极稀的聚合物溶液(浓度一般低于0.01%), 加热到聚合物熔点以上,然后十分缓慢地降温制备。得到的单晶只是几个微米到几百微米大小的薄片状晶体,

但是具有规则外形。单晶的晶片厚度约为

方向的,而聚合物分子链一般有几千条以上,因此认为晶片中分子链是折叠排列的。

(2)球晶。聚合物从浓溶液或熔体冷却时,往往形成球晶一一一种多晶聚集体。依外界条件不同,可以形成树枝晶、多角晶等。球晶可以生长得很大,最大可达到厘米级,用光学显微镜很容易在正交偏振光下观察到球晶呈现的黑十字消光图形。球晶中分子链总是垂直于球晶半径方向。

(3)串晶。在应力作用下的聚合物结晶,一般不一定形成球晶,而是形成纤维状晶体。这种晶体中心为由伸直链构成的微束原纤结构,周围申着许多折叠链片晶。随着应力的增大和伸直链结构增多。其力学强度提高。具有这种结构的制品,由于没有球晶那种散射作用而呈透明状。

(4)柱晶。聚合物熔体在应力作用下冷却结晶时,若是沿应力方向成行地行成晶核,由于晶体生长在应力方向上受到阻碍,不能形成完善的球晶,只能沿垂直于应力方向生长成柱状晶体。

(5)伸直链晶体。聚合物在极高的压力下结晶,可以得到完全由伸直链构成的晶片,称为伸直链

同晶粒直径d 之间的关系是其实质是位错越过晶界需要附加的应力。因此低温用钢往往采用细晶粒组织。 且与聚合物的相对分子质量无关,只取决于结晶时的温度和热处理条件。晶片中分子链是垂直于晶面