当前位置:问答库>考研试题

2017年西安交通大学能源与动力工程学院804材料科学基础考研冲刺密押题

  摘要

一、名词解释

1. 配位数

【答案】配位数是指晶体结构中任一原子周围最邻近且等距离的原子数目。

2. 扩展位错

【答案】一个全位错分解为2个Shockley 不全位错,这样的2个Shockley 位错一起被称为扩展位错。

3. 再结晶

【答案】再结晶是指形变金属在一定的加热条件下,通过新的可移动大角度晶界的形成及随后移动,从而形成无应变新晶粒组织的过程。

4. 位错

【答案】位错是指晶体中的一维缺陷或线状缺陷。

5. 间隙固溶体

【答案】间隙固溶体是指若溶质原子比较小时可以进入溶剂晶格的间隙位置之中而不改变溶剂的晶格类型所形成的固溶体。

二、简答题

6. 请在Mg 的晶胞图中画出任一对可能的双滑移系统,并标出具体指数。

【答案】Mg 为HCP 结构,其滑移系统为

滑移系统: 图中标出一组可能的双

7. 说说你对材料的成分、组织、工艺与性能之间关系的理解。

【答案】材料的成分、组织、工艺与性能之间的关系非常紧密,互相影响。材料的性能与它们的化学成分和组织结构密切相关,材料的力学性能往往对结构十分敏感,结构的任何微小变化,都会使性能发生明显变化。

如钢中存在的碳原子对钢的性能起着关键作用,许多金属材料中一些极微量的合金元素也足以严重影响其性能。然而由同一元素碳构成的不同材料如石墨和金刚石,也有着不同的性能,有些高分子的化学成分完全相同而性能却大不一样,其原因是它们有着不同的内部结构。

材料的内部结构可分为不同层次,包括原子结构、原子的排列方式,以及显微组织和结构缺陷。如果同样的晶体材料,它的晶粒或是“相”的形态和分布改变,就可以大大地改善它的性能。无论是金属、陶瓷、半导体、高分子还是复合材料,它们的发展都与成分和结构密切相关。只有理解和控制材料的结构,才能得到人们所要求的材料性能。

而材料的制备/合成和加工不仅赋予材料一定的尺寸和形状,而且是控制材料成分和结构的必要手段。如钢材可以通过退火、淬火、回火等热处理来改变它们内部的结构而达到预期的性能,冷乳硅钢片经过复杂的加工工序能使晶粒按一定取向排列而大大减少铁损。有时候可以说没有一种合成加工上的新的突破,就没有某一种新材料。如有了快速冷却的加工方法,才有了非晶态的金属合金。

8. 非均匀形核的过冷度通常比均匀形核要小,试分析原因。

【答案】均匀形核的主要阻力是晶核的表面能;而对于非均匀形核,当晶核依附于液态金属中存在的固相质点表面上形核时,就可能使表面能降低,形核功较小,从而使形核可以在较小的过冷度下进行。

9. 固态下,无相变的金属,如果不重溶,能否细化晶粒?如何实现?

【答案】可以。通过进行较大的冷变形,而后在适当温度再结晶的方法获得细晶。或进行热加工,使之发生动态再结晶。

10.用位错理论分析纯金属与两相合金在冷形变加工时,在产生加工硬化机理上有何区别?

【答案】(1)对于纯金属单晶体,使其产生加工硬化的机理主表现在位错增殖、位错运动及位错的交互作用、以及位错反应三个方面:首先,对于位错増殖来说,位错源开动,位错增殖使位错密度增大;其次,位错运动时会受到点阵阻力,并且在位错之间发生交互作用的情况下,会形成割阶、缠结等,也会使其运动阻力增大;第三,位错之间还会发生位错反应,形成如洛玛位错、L-C 位错等的固定位错,从而造成位错塞积,使位错运动阻力进一步增大。综上三个方面使位错运动阻力增大从而产生加工硬化。

(2)对于纯金属多晶体而言,在纯金属单晶体加工硬化的机理的基础上多出了晶界造成的位错塞积作用,其位错运动阻力进一步增大。

(3)对于两相合金而言,首先,若基体相为固溶体,其加工硬化机理又比纯金属多晶体多出了固溶强化方面的作用,即一方面溶质原子会与位错发生弹性交互作用,形成柯垂尔气团,另一方面溶质原子会与位错发生化学交互作用形成铃木气团,这两个方面的原因使位错运动阻力进一步增大;其次,若第二相为硬的颗粒相,其加工硬化机理与固溶体合金相比,还存在分散强化机制,即奥罗万机制和位错切割第二相机制使位错运动阻力更进一步增大。

11.已知原子半径与晶体结构有关,请问当配位数降低时,原子半径如何变化?为什么?

【答案】半径收缩。若半径不变,则当配位数降低时,会引起晶体体积増大。为了减小体积变化,原子半径将收缩。

12.图中的晶体结构属于哪种空间点阵?对于图2-6(a )、(c )求B 原子数与A 原子数之比。

【答案】图a 的晶体结构为简单立方,其中,B 原子数与A 原子数之比为1:1;图b 的晶体结构为体心立方;图c 的晶体结构为体心立方,其中B 原子数与A 原子数之比为6:2=3:1。

13.从材料组织结构对性能影响的角度,定性分析比较金属材料、陶瓷材料、高分子材料在力学性能方面的差异。

【答案】在这三类材料中,其力学性能特点分别是:

(1)金属材料:优异的塑性和韧性,较高的强度和硬度,较大的弹性和较高的弹性模量;

,极小的弹(2)陶瓷材料:塑性和初性几乎为零,极高的硬度和较低的强度(特别是抗拉强度)

性和极大的弹性模量;

(3)高分子材料:较高的塑性和軔性,较低的硬度和强度,极大的弹性和极小的弹性模量。