2017年吉林省培养单位长春光学精密机械与物理研究所811量子力学考研强化模拟题
● 摘要
一、简答题
1. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
2. 写出在表象中的泡利矩阵。 【答案】
问
是否
3. 量子力学中的力学量算符有哪些性质? 为什么需要这些性质?
【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.
量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.
4. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
5. 解释量子力学中的“简并”和“简并度”。
【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。
6. 完全描述电子运动的旋量波函数为
分别表示什么样的物理意义。
【答案
】
表示电子自旋向
下
表示电子自旋向上
的几率。
位置
在
处的几率密度
;
试述
及
7. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
第 2 页,共 51 页
8. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。
【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。
9. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。
(3)电子自旋磁矩需引入2倍关系。
10.非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
二、证明题
11.—粒子处于势场V (x )中,且势V (x )没有奇点. 假设相应的本征能量色【答案】由题意
并在方程两边同时积分
有
第 3 页,共 51 页
是束缚态的波函数,
试证明这两个波函数对应的态矢正交.
考虑到哈密顿算符的厄米算符性质并利用式Ⅱ有
又
则
则由正交归一化条件有
设粒子本征波函数完备集为
态矢为态矢为
即
Ⅳ、Ⅴ代入Ⅲ有
此即亦即两个波函数对应态矢正交.
12.假设A 、B 、C 是三个矩阵,证明【答案】
所以
三、计算题
13.在一维情况下,若用(a )从薛定谔方程出发,证明
(b )对于定态,证明几率流密度与时间无关. 【答案】(a )设t 时刻粒子的波函数
波函数满足薛定谔方程:
对(1)两端取复共轭得,
做运算
得
上式两边同除以移项得,
则几率流密度公式为
第 4 页,共 51 页
表示时刻t 在区间内发现粒子的几率.
其中
是几率流密度.
相关内容
相关标签