2017年湘潭大学材料科学与工程学院836材料科学基础(一)考研导师圈点必考题汇编
● 摘要
一、名词解释
1. 位错
【答案】位错是指晶体中的一维缺陷或线状缺陷。
2. 偏析
【答案】偏析是指合金中各组成元素在结晶时分布不均匀的现象。
3. 再结晶
【答案】再结晶是指形变金属在一定的加热条件下,通过新的可移动大角度晶界的形成及随后移动,从而形成无应变新晶粒组织的过程。
4. 成分过冷
【答案】成分过冷是指合金溶液在凝固时,理论凝固温度不变,过冷度完全取决于溶质成分的分布的现象。
5. 再结晶退火
【答案】再结晶退火是指经过塑性变形的金属,在重新加热过程中,当温度高于再结晶温度后,形成低缺陷密度的新晶粒,使其强度等性能恢复到变形前的水平,但其相结构不变的过程。
二、简答题
6. 简述时效(强化)处理的工艺路线及原理。
【答案】经高温加热及快速冷却的固溶处理得到过饱和单相组织,然后在一定温度和时间内时效到最高硬度/强度,得到弥散、共格析出的强化相。
7. 某刊物发表的论文中有这样的论述:“正方点阵
【答案】
方(四方)点阵中,(410)晶面和(411)晶面的衍射峰突出,因此晶体生长沿<410>和<411>晶向生长较快”。指出其错误所在。 的关系,只有立方点阵中才成立,不能推广到其他点阵。在题目所给的正只是特例,不垂直于(411)才是一般情况。即使对于立方晶系来说. (410)晶面和(411)晶面的衍射峰突出,只能说明多晶体中发生(410)晶面和(411)晶面的择优取向。按Wullf 定理,这与晶体生长沿<410>和<411>晶向生长较快并无因果关系。
8. 任意选择一种材料,说明其可能的用途和加工过程。
【答案】如Al-Mg 合金。作为一种可加工、不可热处理强化的结构材料,由于具有良好的焊接性
能、优良的耐蚀性能和塑性,在飞机、轻质船用结构材料、运输工业的承力零件和化工用焊接容器等方面得到了广泛的应用。
根据材料使用目的,设计合金成分,考虑烧损等情况进行配料,如A15Mg 合金板材,实验室条件下可在电阻坩埚炉中750°C 左右进行合金熔炼,精炼除气、除渣后720°C 金属型铸造,430〜470°C 均匀化退火10〜20h 后,在380〜450°C 热轧,再冷轧至要求厚度,在电阻炉中进行稳定化处理,剪切成需要的尺寸或机加工成标准试样,进行各种组织、性能测试。
9. 画出体心立方晶体的晶胞示意图。
【答案】如图所示。
图
10.简述回复再结晶退火时材料组织和性能变化的规律;为何实际生产中常需要再结晶退火?
【答案】(1)回复再结晶时材料组织变化:该退火过程主要分为回复、再结晶和晶粒长大三个阶段。在回复阶段,由于发生大角度晶界迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学组织上几乎看不出变化。在再结晶阶段,首先是在畸变度大的趋于产生新的无畸变晶粒核心,然后逐渐消耗周围的变形机体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。最后,在表面晶界能的驱动下,新的晶粒互相吞食长大,从而得到在该条件下一个比较稳定的尺寸。
(2)回复再结晶时材料性能变化:在回复阶段,由于金属仍保持很高的位错密度,所以强度和硬度变化很小,但是再结晶后,位错密度显著降低,从而导致强度与硬度明显下降;回复阶段,由于晶体点阵中点缺陷的存在,使电阻明显下降,电阻率明显提高;回复阶段,大部分或全部的宏观内应力可以消除,而微观内应力则只有通过再结晶方可全部消除;回复前期,亚晶粒尺寸变化不大,但在后期,尤其接近再结晶时,亚晶粒尺寸就显著增大;变形金属的密度在再结晶阶段发生急剧増高。
11.解释弹性形变、滞弹性和弹性变形能。
【答案】(1)当外力撤消后,物体能完全恢复到原来的形状,就称这样的物体为弹性体,物体相应的形变为弹性形变,如弹簧的形变等。如果作用在物体上的外力很大,引起物体的形变也很大,那么除掉外力后物体就不能完全恢复到原样,这种特性称之为物体的塑性。
(2)在弹性范围内,应变落后于应力的现象称为滞弹性。它是相对于弹性现象而言的,如果受载
物体上的应力与应变同步,两者据有单值函数关系且服从胡克定律,这样的物体称为理想线弹性体。滞弹性体的弹性模量不再为常数,弹性模量分为动弹性模量和静弹性模量两部分,把这两者的相对差值称为模量亏损。由于滞弹性的存在,会产生内耗(在机械振动过程中由于滞弹性造成的震动能量的损耗,机械能散发为热能的现象。)滞弹性很大的金属材料是极少数,多数材料的滞弹性很小。
(3)固体受外功作用而变形,在变形过程中,外力所作的功转变为储存于固体内的能量,固体在外力作用下,变形能有弹性变形因变形而储存能量称为变形能或应变能。能与塑性变形能。当外力逐渐减小,变形逐渐减小,固体会释放出部分能量而作功,这部分能量为弹性变形能。
12.试从结合键的角度,分析工程材料的分类及其特点。
【答案】金属材料:主要以金属键为主,大多数金属强度和硬度较高,塑性较好。陶瓷材料:以共价键和离子键为主,硬、脆,不易变形,熔点高。高分子材料:分子内部以共价键为主,分子间为分子键和氢键为主。复合材料:是以上三中基本材料的人工复合物,结合键种类繁多,性能差异很大。
13.何谓塑料?何谓橡胶?两者在室温时的力学性能有何显著差别?
【答案】塑料是指室温下处于玻璃态的高分子材料。
橡胶是指室温下处于高弹态的高分子材料。
室温下,塑料的硬度较高,但其脆性较大,容易脆性断裂,弹性较低;橡胶的硬度较低,但脆性较小,不易断裂,弹性较高容易发生弹性变形。
14.在室温下对铁板(其熔点为1538°C )和锡板(其溶点为232°C )分别进行来回弯折,随着弯折的进行,各会发生什么现象?为什么?
【答案】由可知,在室温下,Fe 加工为冷加工,Sn 加工为热加工。随着对其进行来回弯折,铁板发生加工硬化,塑性下降很快,硬度及脆性很大,随着继续变形,最终导致铁板断裂;Sn 板属于热加工,不会发生加工硬化的现象,但由于热加工会产生动态再结晶,会出现加工流线及带状组织,使材料的力学性能呈现各向异性,顺纤维的方向较垂直于纤维方向具有较高的力学性能,经过长时间弯折会变得弯曲。
15.为什么固溶体凝过程中,在正的温度条件下可以呈现树枝状长大,而纯金属却不能?如果其他条件不变,当温度梯度逐渐增大时,该固溶体的长大方式将有什么样的变化?
【答案】(1)因为纯金属凝固时,结晶前沿的液体具有正的温度梯度,无成分过冷区,故柱状晶前沿大致呈平面状生长。对于固溶体来说,当柱状晶前沿液相中具有较大成分过冷区时,柱状晶便以树枝状方式生长。
(2)当温度梯度较小时,固溶体产生较大的成分过冷,过冷度较大,以树枝状方式长大;随着温度梯度増大,固溶体产生的成分过冷减小,过冷度较小,以胞状晶方式长大;当温度梯度很大时,固溶体产生的成分过冷很小,过冷度也很小,以平面状方式长大。
相关内容
相关标签