2018年兰州交通大学环境与市政工程学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1.
已知
对角矩阵.
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
是矩阵
的二重特征值,求a 的值,并求正交矩阵Q
使
为
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
再将单位化,得正交矩阵:
且有
2. 设二次
型
(Ⅰ)用正交变换化二次型(Ⅱ
)求【答案】
(Ⅰ)由
矩阵A 满足AB=0, 其
中
为标准形,并写出所用正交变换;
知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
于是
3. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
4.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
由
知
线性相关,不合题意.
的基础解系.
故所求的方程组可取为
将
代入得,
构
解得此方程组
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
线性无关,可作为三个不同特征
(Ⅱ
)
知
的基础解系,
即为
的特征向量
二、计算题
相关内容
相关标签