当前位置:问答库>考研试题

2017年中原工学院材料与化工学院810材料科学基础考研仿真模拟题

  摘要

一、简答题

1. 什么是二次再结晶?二次再结晶发生的条件是什么?二次再结晶后织构会不会发生变化?

【答案】二次再结晶是指在再结晶完成的基础上,少数晶粒的异常长大现象。此时晶粒尺寸分布出现双峰现象。发生条件:一般晶粒生长受阻,如粒子钉扎、织构钉扎或厚度效应。当钉扎作用不均匀消失时,个别晶粒先摆脱钉扎而充分生长。

于弥散相抑制晶粒长大,一般不会产生二次织构;对于织构抑制晶粒长大,有时会产生二次织构,有时不会产生二次织构;对于厚度抑制晶粒正常长大,会产生二次织构。

2. 以低碳钢的拉伸曲线为例,运用位错理论说明屈服现象及加工硬化现象。

【答案】低碳钢的屈服是由于低碳钢中的碳是间隙原子,它与铁素体中的位错交互作用形成溶质原子气团,即所谓的柯氏气团。该气团对位错有钉扎作用,只有在较大的应力作用下,位错才能脱离溶质原子的钉扎,表现为应力-应变曲线上的上屈服点。而一旦位错脱钉,继续滑移,就不需要那么大应力了,表现为应力-应变曲线上的下屈服点和水平台阶。当继续变形时,由于位错数量的大大増加,导致应力又出现升高的现象,称为加工硬化现象。这是由于冷变形金属在塑性变形过程中形成大量位错,这些位错部分成为不可动位错,从而导致其对可动位错的阻力增大,引起材料继续变形困难,形成加工硬化或形变强化。

3. 何为晶粒生长与二次再结晶?简述晶粒生长与二次再结晶的区别,并根据晶粒的极限尺寸讨论晶粒生长的过程。

【答案】晶粒生长是无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程。在坯体内晶粒尺寸均匀地生长,晶粒生长时气孔都维持在晶界上或晶界交汇处。

二次再结晶是少数巨大晶粒在细晶消耗时的一种异常长大过程,是个别晶粒的异常生长。二次再结晶时气孔被包裹到晶粒内部。二次再结晶还与原料粒径有关。

造成二次再结晶的原因:原料粒径不均匀,烧结温度偏高,烧结速率太快。晶粒生长过程略。 防止二次再结晶的方法:控制烧结温度、烧结时间,控制原料粒径的均匀性,引入烧结添加剂。

4. 举例说明材料的基本强化形式有哪几种,并说明其中三种的强化机制。

【答案】通过合金化、塑性变形和热处理等手段提高金属材料强度的方法,称为材料的强化。其强化基本形式有:固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化等。

这些强化方式总的来说是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高材料强度。 (1)固溶强化:无论是代位原子或是填隙原子,在条件合适的情况下,都可能发生原子偏聚而形成气团。对代位点阵来说,当溶质原子比溶剂原子的直径大时,溶质原子有富集在刃型位错受胀

区的趋向;反之,富集于受压区。填隙原子则总是向受胀区富集。这种靠扩散在位错附近富集的现象,称为柯氏气团(Cottrellatmosphere )。柯氏气团对位错有钉扎作用,从而使强度提高。 (2)沉淀强化和弥散强化:过饱和固溶体随温度下降或在长时间保温过程中(时效)发生脱溶分

,解。时效过程往往是很复杂的,如铝合金在时效过程中先产生GP 区,继而析出过渡相(0”及e' )

最后形成热力学稳定的平衡相(0)。细小的沉淀物分散于基体之中,阻碍着位错运动而产生强化作用,这就是“沉淀强化”或“时效强化”。

(3)加工硬化:冷变形金属在塑性变形过程中形成大量位错,这些位错部分成为不可动位错,从而导致其对可动位错的阻力增大,引起材料继续变形困难,形成加工硬化或形变强化。

5. Cu-Zn 组成的互扩散偶发生扩散时,标志面会向哪个方向移动?为什么?

【答案】Cu-Zn 组成的互扩散偶发生扩散时,标志面会向Zn 端移动。这是因为

从而产生柯肯达尔效应。

6. 何谓正偏析与负偏析?

【答案】(1)正偏析:当溶质的分配系数

(2)的合金凝固时,部分溶质被排挤到凝固界面附近的液相中,以后再凝固出的固相中溶质浓度就随之升高,这种偏析称为正偏析。 的合金凝固时,在凝固过程中外层的一定范围内溶质浓度由外向内逐步降低,这种偏析称为负偏析。

7. 固相烧结与液相烧结的主要传质方式?固相烧结与液相烧结之间有何相同与不同之处?

【答案】(1)固相烧结有蒸发-凝聚传质和扩散传质;液相烧结有流动传质和溶解. 沉淀传质; (2)相同点:①烧结推动力,②烧结过程;

不同点:①烧结速率,②致密化过程,③影响因素。

8. 试说明在正温度梯度下为什么固溶体合金凝固时可以呈树枝状方式成长,而纯金属则得不到树枝状晶。

【答案】由于溶质原子再分配造成成分过冷,使固溶体合金正温度梯度下凝固时也可以呈树枝状方式成长;而纯金属则需要在负温度梯度下才能得到树枝状晶。

9. 在高温时是什么晶体结构?为什么电解质只能在高温时使用? 【答案】在高温时是立方晶系结构,在低温下发生晶型转变。其晶型有多种变体,低温时为单斜晶系,高温是为四方晶型,更高温为立方晶型。单斜晶性加热到1170°C 转变为四方晶型,再加热至2370°C 则转变为立方晶型。

电解质高温时溶于硫酸、氢氟酸。具有良好的热化学稳定性、高温导电性及较好的高温强度和初性。

10.解释冷变形金属加热时回复、再结晶的过程及特点。

【答案】冷变形金属加热时,各自特点如下:

(1)回复过程的特征

①回复过程组织不发生变化,仍保持变形状态伸长的晶粒。

②回复过程使变形引起的宏观一类应力全部消除,微观二类应力大部分消除。

③回复过程中一般力学性能变化不大,硬度、强度仅稍有降低,塑性稍有提高,某些物理性能有较大变化,电阻率显著降低,密度增大。

④变形储能在回复阶段部分释放。

(2)再结晶过程的特征

①组织发生变化,由冷变形的伸长晶粒变为新的等轴晶粒。

②力学性能发生急剧变化,强度、硬度急剧降低,塑性提高,恢复至变形前的状态。

③变形储能在再结晶过程中全部释放,三类应力(点阵畸变)清除,位错密度降低。

(3)晶粒长大过程的特征

①晶粒长大。

②引起一些性能变化,如强度、塑性、初性下降。

③伴随晶粒长大,还发生其他结构上的变化,如再结晶织构。

11.解释施主态、受主态和受主能级。

【答案】非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显著的差别。

非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个桂原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。

悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,一个能级不被电子占据时呈中性,被电子占据时带负电,则被称为受主能级。一个能级被电子占据时呈中性,不被电子占据时带正电,则被称为施主能级。

半导体掺施主或受主杂质时会在禁带内引入杂质能级。施主杂质引入施主能级,受主杂质引入受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。施主能级重要分布于高于费米能级的能带,受主能级重要分布于低于费米能级的能带。

12.固态下,无相变的金属,如果不重溶,能否细化晶粒?如何实现?

【答案】可以。通过进行较大的冷变形,而后在适当温度再结晶的方法获得细晶。或进行热加工,使之发生动态再结晶。