当前位置:问答库>考研试题

2018年西北大学公共管理学院312心理学专业基础综合之现代心理与教育统计学考研强化五套模拟题

  摘要

一、概念题

1. 协方差分析

【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。

2. 四分差

【答案】四分差又称四分位差,是差异量数的一种。计算公式:

位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。

3. 嵌套设计

【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的

B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。

4. 集中量数与差异量数

【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。

二、简答题

5. 试举例说明各种数据类型之间的区别。

【答案】根据不同的分类标准,心理与教育科学研究中的数据可以区分为不同的类型。 (1)从数据的观测方法和来源划分,研究数据可区分为计数数据和测量数据两大类。

①计数数据(count data ), 是指计算个数的数据,一般属性的调查获得的是此类数据,它具有独立的分类单位,一般都取整数形式。

②测量数据(measurement data ), 又称计量数据是指借助于一定的测量工具或一定的测量标准而获得的数据。

(2)根据数据反映的测量水平,可把数据区分为称名数据、顺序数据、等距数据和比率数据四种类型。

①称名数据(nominal data)只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小,在教育和心理类调查研究中,有关被试属性的调查资料,大多属于这类数据。

②顺序数据(ordinal data )是指既无相等单位,也无绝对零的数据,是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。如学生的等级评定、喜爱程度、品质等级、能力等级、兴趣等。这种数据不具有相等单位,也没有绝对零点,只能排出一个顺序,不能指出相互间的差别大小这类数据不能进行加减乘除运算。

③等距数据(interval data )是有相等单位,但无绝对零的数据,如温度、各种能力分数、智商等。只能使用加减运算,不能使用乘除运算。

④比率数据(ratio data )既表明量的大小,也有相等的单位,同时还具有绝对零点,如身高、体重、反应时、各种感觉阈值的物理量等都属于这种数据类型。

(3)按照数据是否具有连续性,把数据划分为离散数据和连续数据。

①离散数据(discrete data)又称为不连续数据、间断数据。这类数据在任何两个数据点之间所取的数值的个数是有限的。

②连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。至少在理论上从最高到最低之间都可以进一步细分。

6. 线性回归的基本假设是什么?

【答案】(1)线性关系假设

X 与Y 在总体上具有线性关系,这是一条最基本的假设。回归分析必须建立在变量之间具有线性关系的假设成立上。如果X 与Y 的真正关系不是线性,而回归方程又是按线性关系建立的,这个回归方程就没有什么意义了。非线性的变量关系,需使用非线性模型。

(2)正态性假设

正态性的假设系指回归分析中的Y 服从正态分布。这样,与某一个

量Y 的一个子总体,所有这样的子总体都服从正态分布,其平均数记作各个子总体的方差都相等。因此经由回归方程式所分离的误差项e ,即由特定与实际值对应的Y 值构成变方差记作所预测得到的之间的差距,也应呈正态分布。误差项e 的平均数为0。所以,也有人指出线性回归中应满足变量X 没有测量误差这一严格假设,但在实际中很难满足,常常只是对X 的测量误差忽略不计。

(3)独立性假设

①指与某一个X 值对应的一组F 值和与另一个X 值对应的一组7值之间没有关系,彼此独立。

②指误差项独立,不同的X 所产生的误差之间应相互独立,无自相关

误差项也需与自变量X 相互独立。

(4)误差等分散性假设

特定X 水平的误差,除了应呈随机化的常态分配,其变异量也应相等,称为误差等分散性。不相等的误差变异量(即误差变异歧异性,),反应出不同水平的X 与Y 的关系不同,不应以单一的回归方程式去预测Y 。当研究资料具有极端值存在时,或非线性关系存

在时,误差变异歧异性的问题就容易出现。违反假设时,对于参数的估计检验力就会变得不足。

7. 下述一些数据,哪些是测量数据? 哪些是计数数据? 其数值意味什么?

(1)17.0千克 (2)89.85厘米 (3)199.2秒 (4)17人 (5)25本 (6)93.5分

【答案】上面的数据中测量数据有:(1)17.0千克(2)89.85厘米(3)199.2秒(6)93.5分

测量数据是指借助于一定的测量工具或一定的测量标准而获得的数据。

计数数据有:(4)17人(5)25本

计数数据是指计算个数的数据,一般属性的调查获得的是此类数据,它具有独立的分类单位,一般都取整数形式。

8. 根据不同条件下,不同统计量的假设检验方法,试概括出假设检验的基本过程。

【答案】假设检验的基本过程有:

(1)提出虚无假设和备择假设;

(2)选择检验的统计量并计算其值;