2017年兰州理工大学理学院801材料科学基础之材料科学基础考研导师圈点必考题汇编
● 摘要
一、名词解释
1. 成分过冷
【答案】成分过冷是指合金溶液在凝固时,理论凝固温度不变,过冷度完全取决于溶质成分的分布的现象。
2. 离子键
【答案】离子键是通过两个或多个原子或化学基团失去或获得电子而成为离子后形成的。带相反电荷的离子之间存在静电作用,当两个带相反电荷的离子靠近时,表现为相互吸引,而电子和电子、原子核与原子核之间又存在着静电排斥作用,当静电吸引与静电排斥作用达到平衡时,便形成离子键。因此,离子键是阳离子和阴离子之间由于静电作用所形成的化学键。
3. 偏析
【答案】偏析是指合金中各组成元素在结晶时分布不均匀的现象。
4. 非均匀形核
【答案】新相优先在母相中存在的异质处形核,即依附与液相中杂质或外来表面形核。与均匀形核相比,它需要的形核功和过冷度都较小。
5. 晶面族
【答案】晶面族是对称关系(原子排列和分布,面间距)相同只是空间位向不同的各组等同晶面,用{hkl}表示。
二、简答题
6. 解释冷变形金属加热时回复、再结晶的过程及特点。
【答案】冷变形金属加热时,各自特点如下:
(1)回复过程的特征
①回复过程组织不发生变化,仍保持变形状态伸长的晶粒。
②回复过程使变形引起的宏观一类应力全部消除,微观二类应力大部分消除。
③回复过程中一般力学性能变化不大,硬度、强度仅稍有降低,塑性稍有提高,某些物理性能有较大变化,电阻率显著降低,密度增大。
④变形储能在回复阶段部分释放。
(2)再结晶过程的特征
①组织发生变化,由冷变形的伸长晶粒变为新的等轴晶粒。
②力学性能发生急剧变化,强度、硬度急剧降低,塑性提高,恢复至变形前的状态。
③变形储能在再结晶过程中全部释放,三类应力(点阵畸变)清除,位错密度降低。
(3)晶粒长大过程的特征
①晶粒长大。
②引起一些性能变化,如强度、塑性、初性下降。
③伴随晶粒长大,还发生其他结构上的变化,如再结晶织构。
7. 说明材料中的结合键与材料性能的关系。
【答案】材料结合键的类型及结合能的大小对材料的性能有重要的影响,特别是对物理性能和力学性能。
物理性能:(1)结合键越强,熔点越高,热膨胀系数就越小,密度也越大。
(2)金属具有光泽、高的导电性和导热性、较好的机械强度和塑性,且具有正的电阻温度系数,这就与金属的金属键有关。
(3)陶瓷、聚合物一般在固态下不导电,这与其非金属键结合有关。工程材料的腐蚀实质是结合键的形成和破坏。
力学性能:(1)晶体材料的硬度与晶体的结合键有关。一般共价键、离子键、金属键结合的晶体比分子键结合的晶体的硬度高。
(2)结合键之间的结合键能越大,则弹性模量越大。
(3)工程材料的强度与结合键能也有一定的联系。一般结合键能高,强度也高一些。
(4)材料的塑性也与结合键类型有关,金属键结合的材料具有良好的塑性,而离子键、共键结合的材料塑性变形困难,所以陶瓷材料塑性很差。
8. 画出相图。
【答案】如图所示。
图
9. 何谓n 型半导体?何谓p 型半导体?两者的载流子特征有何不同?
【答案】(1)n 型半导体是指本征半导体Si 或
成的半导体。
p 型半导体是指在本征半导体Si 或(2)
成的半导体。
(3)n 型半导体的载流子包括施主电子、本征电子及等量的本征空穴,故其电子浓度高于空穴浓度;p 型半导体的载流子包括受主空穴、本征电子及等量的本征空穴,故其空穴浓度也高于电子浓度。
10.图为两组销铜合金的时效强化曲线;讨论成分变化及时效温度对力学性能(这里是硬度值)的影响,分析可能的原因。
中加入少量IIIA 族的B 或或Ga 或In 等元素后所形中加入少量V A 族的P 或As 或Sb 等元素后所形
图
【答案】(1)成分变化对力学性能的影响:随铝中含铜量提高,过饱和度加大,脱溶驱动力加大,析出速度加快,硬度值増加。
(2)时效温度的影响:时效温度越高,扩散速度加快,析出加快,但过饱和度减小,脱溶驱动力也减小,GP 区或亚稳相可能不出现。
(3)原因:时效强化主要靠GP 区和相,因两者很细小弥散,有共格或半共格界面,强化效果好。
11.简单立方晶体中,若位错线方向为[001],试说明该位错属于什么类型的位错?
【答案】因位错线方向与柏氏矢量方向垂直,因此该位错为刃位错。
12.何为金属材料的加工硬化?如何解决加工硬化给后续加工带来的困难?
【答案】金属材料在塑性变形过程中,随着变形量的增加,强度和硬度不断上升,而塑性和韧性不断下降,这一现象称为“加工硬化”。该现象的原因是由于外力増加使得位错不断増殖,位错之间相互交结、反应使得位错的运动变得困难。该现象可以用再结晶退火处理消除加工硬化对后续加工带来的困难。
13.固相烧结与液相烧结之间有何相同与不同之处?
【答案】(1)固相烧结与液相烧结之间的相同之处: